煤矿井下人员精确定位系统数据压缩
[Abstract]:The personnel positioning system in coal mine is one of the important guarantee for coal mine enterprises to realize safe production. With the expansion of the scale of coal mining enterprises, the location data of underground personnel collected by positioning equipment are also growing rapidly. In order to achieve a more standardized and reasonable safety management ability for mine personnel, the mine personnel positioning system is bound to store and transmit more massive complex data. By optimizing the compression of massive human location data, it can not only effectively reduce the burden of storing and transmitting massive data, reduce the consumption of bandwidth resources, but also greatly reduce the redundancy of personnel location data. It is convenient to analyze and excavate the behavior track of all kinds of underground work. Because the traditional compression algorithm does not combine the spatio-temporal characteristics of the location data, but only from the point of view of the text, the data compression algorithm based on general purpose can not achieve a higher compression ratio. By analyzing the spatial and temporal characteristics of the location data, the compression of the location data is divided into the compression of the locus data. At present, trajectory compression algorithms are mostly aimed at vehicle location data, and the coarse granularity compression of track data is realized by preserving some feature points. Although the algorithm can achieve extremely high compression ratio, it can not guarantee the compression quality. Based on the research and comparison of the existing algorithms of trajectory compression, combined with the positioning principle of the personnel positioning system in coal mine and the characteristics of the personnel position data, the compression of the personnel location data can be realized in this paper. Firstly, the advantages and disadvantages of the related trajectory algorithm are analyzed synthetically, and then the algorithm based on the road network features is selected to realize the preliminary compression scheme of describing the human trajectory information by the laneway information. Secondly, the key information of the movement of the personnel is to select the reentry and stay information in the laneway. Through the analysis and judgment of the entry point and the long stay point in the roadway, the record of the specific movement of the downhole personnel in the tunnel is realized, and the data of the personnel position is compressed. Finally, the paper reconstructs the information between the adjacent key points step by using the method of time proportional isometric partition, and realizes the decompression of the data. Compared with the simple path compression algorithm based on road network features, the improved algorithm can not only obtain a higher compression ratio, but also reduce the error of reconstruction data significantly. Improve the quality and application value of compressed data. Combined with the characteristic that the movement of underground personnel is restricted by the distribution of roadway, the movement track of personnel will follow a specific law. A trajectory compression algorithm based on sample trajectory is proposed. In the experiment, several sample trajectories are used to reconstruct the massive new trajectories, and the compression ratio of the massive trajectory data is obtained by using the sample trajectories.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD76
【参考文献】
相关期刊论文 前10条
1 程倩;丁云峰;;基于路网的GPS轨迹在线压缩方法[J];计算机系统应用;2016年06期
2 张鑫宇;宋瑾钰;;LBS系统研究现状综述[J];工业控制计算机;2016年04期
3 樊庆富;张磊;刘磊军;鲍苏宁;房晨;;基于偏移量计算的在线GPS轨迹数据压缩[J];计算机工程与应用;2017年08期
4 刘磊军;房晨;张磊;鲍苏宁;;基于运动状态改变的在线全球定位系统轨迹数据压缩[J];计算机应用;2016年01期
5 江俊文;张凯;王晓玲;金澈清;;基于行驶特征的轨迹压缩技术[J];计算机科学与探索;2016年09期
6 江俊文;王晓玲;;轨迹数据压缩综述[J];华东师范大学学报(自然科学版);2015年05期
7 李川;张彪;李艳梅;杨宁;王勇;;路网空间中GPS轨迹压缩的新方法[J];北京邮电大学学报;2015年02期
8 李亚兵;;煤矿安全监测监控系统的发展现状及发展趋势分析[J];科技资讯;2014年21期
9 张达夫;张昕明;;基于时空特性的GPS轨迹数据压缩算法[J];交通信息与安全;2013年03期
10 夏圣凯;王常法;江有福;;船载AIS数据分段实时压缩改进方法[J];科技视界;2013年09期
相关博士学位论文 前2条
1 吕振华;移动对象轨迹数据挖掘研究[D];华东师范大学;2016年
2 吴建军;城市交通网络拓扑结构复杂性研究[D];北京交通大学;2008年
相关硕士学位论文 前10条
1 潘伟;定位数据压缩算法研究[D];大连工业大学;2015年
2 曹静;基于GPS数据的用户轨迹相似性分析[D];中国海洋大学;2015年
3 李文静;基于Hadoop的道路匹配算法与车辆行驶轨迹还原系统的设计与实现[D];西北大学;2014年
4 赵俊杰;煤矿井下人员定位系统的设计与实现[D];河南师范大学;2014年
5 冯神柱;路网轨迹数据的压缩存储技术研究[D];杭州电子科技大学;2014年
6 赵迪华;车辆导航系统中的地图匹配算法研究[D];云南大学;2012年
7 宋岸峰;实时数据并行压缩技术的研究[D];华中科技大学;2012年
8 张楠;可持续发展视角下大型煤炭企业发展战略研究[D];首都经济贸易大学;2011年
9 石楠;基于RFID的井下人员定位系统的软件设计与实现[D];西安科技大学;2010年
10 文水英;实时数据库中历史数据压缩算法的研究[D];中南大学;2008年
,本文编号:2122612
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2122612.html