基于贝叶斯网络的火灾信息融合方法研究
[Abstract]:Fire is a kind of combustion process without artificial control. The basic elements of the fire are combustible, combustible and ignition sources. The physical and chemical phenomena in the combustion process can be detected. The basic purpose of the disaster alarm is to obtain the relevant information when the fire occurs and deal with it to achieve the purpose of timely and accurate alarm. Traditional sensing methods only collect smoke, temperature, light, gas and other single characteristic parameters of fire, and adopt threshold method to judge fire, which will inevitably be disturbed by the environment, which limits its sensing performance. System high false alarm rate of the problem is more prominent. This paper introduces the development process and principle of fire detection technology. The types, principles, advantages and disadvantages of several kinds of fire detectors are introduced. The traditional and artificial intelligence fire information fusion algorithms are introduced in detail, and their advantages and disadvantages are analyzed. The fire information fusion algorithm is an important part of the fire detection system. How to improve the accuracy of alarm and reduce the false alarm rate is the focus of the research. After the chapter introduces the basic principle of multi-sensor information fusion technology, through the analysis of the principle, understand the form of each information fusion structure and its advantages and disadvantages. It lays a good theoretical foundation for effectively utilizing the redundancy and diversity of sensor information, improving the timeliness and reliability of fire detection information extraction, improving the accuracy of fire detection system alarm and reducing false alarm. Several typical fire scenes are simulated by FDS software, and the information of fire characteristic parameters is obtained. The method of continuous attribute discretization is analyzed, and the Bayesian network model is constructed by using BayesiaLab. The temperature, smoke concentration and CO concentration of the fire field are taken as input variables, and the probability of smoldering, open fire and non-fire state is taken as the output quantity. The fire characteristic parameter information and Bayesian network model parameters are read by using Microsoft Visual C 6.0 editing interface, and the final information fusion results are outputted. Through the example, it can show the probability of fire state clearly and intuitively, and can make fire alarm response quickly, and can recognize the state of smoldering fire very well.
【学位授予单位】:沈阳航空航天大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU892
【参考文献】
相关期刊论文 前8条
1 厉剑,殷福亮,董文辉,梅志斌;火灾探测算法评估技术研究(英文)[J];火灾科学;2005年03期
2 王双成;林士敏;陆玉昌;;用贝叶斯网络进行因果分析[J];计算机科学;2000年10期
3 岳博,焦李成;Bayes网络最优近似下边缘分布的不变性[J];计算机学报;2004年07期
4 孙兆林,杨宏文,胡卫东;基于贝叶斯网络的态势估计方法[J];计算机应用;2005年04期
5 张鹏,郭永基;基于故障模式影响分析法的大规模配电系统可靠性评估[J];清华大学学报(自然科学版);2002年03期
6 赵妮,柳毅,顾中国,田梦君;基于多智能体技术的信息融合系统[J];探测与控制学报;2005年01期
7 杜建华,张认成;火灾探测器的研究现状与发展趋势[J];消防技术与产品信息;2004年07期
8 梁玲;陈庶民;徐孟春;殷石昌;;基于贝叶斯模型的网络风险动态评估方法[J];信息工程大学学报;2007年01期
相关博士学位论文 前1条
1 张晓丹;汽车发动机故障诊断中不确定性问题的贝叶斯网络解法[D];东北大学;2005年
相关硕士学位论文 前10条
1 尚峰;复合型智能火灾探测器的研究[D];大连理工大学;2003年
2 谢斌;贝叶斯网络在可靠性分析中的应用[D];西南交通大学;2004年
3 李小亚;基于人工智能的数据融合技术在火灾探测中的应用研究[D];广东工业大学;2005年
4 阙夏;连续属性离散化方法研究[D];合肥工业大学;2006年
5 王丽萍;基于多传感器信息融合技术的火灾探测系统研究[D];湖南大学;2006年
6 傅剑锋;基于数据融合技术的火灾探测算法研究[D];重庆大学;2007年
7 张铮;基于贝叶斯分类的入侵检测规则学习模型的研究与实现[D];南京航空航天大学;2007年
8 谢云芳;基于贝叶斯网络的配电系统可靠性评估[D];河北农业大学;2008年
9 雷娜;基于贝叶斯网络的配电网可靠性及其经济性研究[D];北京交通大学;2008年
10 路海娟;基于信息融合技术的火灾报警方法研究[D];沈阳航空工业学院;2008年
,本文编号:2143322
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2143322.html