基于声表面波传感技术煤矿瓦斯浓度监测系统研究
[Abstract]:Coal mine safety is an important work in coal production, and coal mine gas accident is the most important one in coal mine safety accidents. Coal mine gas accident has brought great threat to people's life and property safety. With the continuous development of monitoring technology and the urgent requirement of intelligent mine construction, it is of great significance to study a new and reliable coal mine gas monitoring system for improving coal mine gas safety monitoring technology. Full monitoring technology development requirements, is expected to play a huge role in coal mine gas detection. This paper focuses on the center frequency of 300 M delay line SAW gas sensor monitoring system, the main content is composed of two parts, hardware and software. Hardware part of the research, through the SAW gas Based on the analysis of the detection principle and method of the volume sensor, the gas concentration monitoring system is designed by the mixing detection method with double-channel delay line structure. The front-end part of the hardware circuit includes the high-frequency oscillation circuit, the mixing and its differential signal processing circuit. The high-frequency oscillation circuit is used to generate the center of the SAW sensor. Frequency-dependent 300M high-frequency oscillation signal. The high-frequency oscillation circuit uses a positive feedback oscillation circuit structure. The amplifier uses an INA-02186 integrated RF amplifier to provide the gain and loss of the oscillation circuit. The LC phase shifter adjusts the phase difference of the oscillation signal to keep the circuit in a stable state of oscillation. The mixing and its differential signal processing circuit are sensitive to passing. The local oscillator signal of the thin film material and the reference signal of the non-sensitive thin film material are mixed down, low-pass, amplified, and shaping into square wave signal which is easy to detect. The mixing circuit adopts integrated design structure, selects AD831 integrated chip as mixer, and sets the peripheral pin circuit to make the AD831 work in low-power mixing state. The 5th-order low-pass filter is used to remove the useless signal components of signal oscillation. The 2SC3355 high-power transistor amplifier is used to amplify the filtered signal. Finally, the 74HC14-based shaping circuit shapes the amplified oscillation signal into a square-wave signal which is easy to detect the frequency information. The back-end part includes MCU minimal system and acoustooptic warning, LCD display, SD card storage, USB download, communication circuit and other peripheral circuits. MCU extracts the frequency information of square wave signal processed by front-end circuit and converts it into concentration information. In the aspect of software research, using VB software as the design environment of the upper computer, the whole upper computer is divided into three parts: account management, user operation and data operation. The connection established by SS database makes the upper computer have the function of storing the concentration information transmitted by the lower computer, and calls the DataGrid control in the component, establishes the concentration information inquiry table in the upper computer. In addition, in view of the actual application situation, RS-485 communication and RS-485 master-slave communication are used to realize the remote sensing concentration information. Finally, the gas concentration monitoring system terminal with the function of acoustooptic alarm system monitoring is realized, and the sensor system is simplified to realize the design of a simple gas concentration monitoring sensor node. The actual preparation of the system and its practical application in underground coal mines have certain significance.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD712.5
【参考文献】
相关期刊论文 前10条
1 周江;;TTL、CMOS及施密特触发器[J];大众科技;2016年09期
2 罗斌;;MAX485的多点通信安防报警系统[J];电子世界;2016年11期
3 谢代梁;葛慎;胡朋兵;程佳;张建锋;;有源光纤式流量传感器的研究进展[J];中国计量学院学报;2015年01期
4 穆辛;周新田;张慧慧;金锐;刘钺杨;吴郁;;一种施密特触发器型压控振荡器的设计与仿真[J];电子科技;2014年04期
5 曾以成;方清;李志军;余世成;;MLC高阶振荡电路的研究与设计[J];湘潭大学自然科学学报;2013年04期
6 鄢芬;崔新友;余菲;邹俊华;余灯;;声表面波温度传感器的信号检测方法与实现[J];测控技术;2013年06期
7 冯子陵;俞建新;;RS485总线通信协议的设计与实现[J];计算机工程;2012年20期
8 黄军;高晓蓉;王敏锡;罗林;;射频电路中混频器的设计[J];现代电子技术;2012年13期
9 王立红;;基于单片机的数字频率计设计[J];电子世界;2012年10期
10 李川;杜晓松;胡佳;蒋亚东;;声表面波气体传感器振荡电路设计[J];传感器与微系统;2012年01期
相关博士学位论文 前1条
1 李淑红;基于声表面波技术的新型气体传感器的研究[D];南开大学;2010年
相关硕士学位论文 前8条
1 周晨蕾;面向声表面波瓦斯传感器的检测报警系统研究[D];西安科技大学;2016年
2 姚顺奇;声表面波传感器高频振荡电路研究[D];西安科技大学;2015年
3 白孝涛;声表面波煤矿瓦斯传感器匹配检测电路设计与研究[D];西京学院;2015年
4 李川;声表面波气体传感器阵列信号采集电路设计[D];电子科技大学;2012年
5 左大伟;声表面波气体传感器信号检测电路的设计与优化[D];电子科技大学;2010年
6 黄超;声表面波传感器信号处理电路的设计[D];电子科技大学;2009年
7 周洪林;声表面波甲醛气体传感器研究[D];大连理工大学;2007年
8 孙蕾;用于声表面波甲醛传感器的相关系统研究[D];大连理工大学;2005年
,本文编号:2219395
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2219395.html