基于ASAR数据的海面溢油信息提取
[Abstract]:Because of the complexity of marine environment, the oil spill accidents occur soon after weathering, diffusion, if not timely monitoring, emergency measures, its impact on the marine environment and resources will be very serious. Spaceborne synthetic Aperture Radar (Synthetic Aperture Radar, SAR) is used to detect oil spills, which is mainly based on the difference of the backscattering intensity of sea surface to microwave wave band. It has the characteristics of small weather influence, high detection precision and wide coverage, which can ensure the accurate identification of oil spill targets on the sea surface. At present, the main problems in the research of Spaceborne synthetic Aperture Radar (SAR) monitoring oil spill are as follows: first, the effect of oil spill "false target" greatly reduces the recognition accuracy of oil spill target; second, the spatial information analysis of oil spill target is insufficient. Lack of spatial similarity to consider oil spill target recognition. In this paper, the method of extracting oil spill information from sea surface combines expert knowledge with object oriented classification method, which solves the problem of "false target", and takes texture feature as the input of classification object. The object-oriented classification method is used to further excavate the two-dimensional spatial features of oil spill targets. The innovation of this study lies in: according to the causes, characteristics and development trend of the "false target" in the spaceborne SAR sea surface oil spill image, the classification rules of "false target" are established, and the "false target" is classified by using the classification rule. Combined with the image feature of the oil spill and the background information of the oil spill event, it can be used as the expert knowledge base to eliminate the false target. On the other hand, in recognition of the limitations of the existing image information extraction techniques, we further consider the two-dimensional spatial features of the target by combining the "false target" recognition with the object-oriented classification method. An oil spill information extraction and monitoring scheme based on spaceborne SAR images was established, and a better target recognition effect was obtained, which is another innovation of this study. Taking the oil spill accident caused by the Lebanon War in 2006 as an example, using the ENVISAT-ASAR data, the technical methods proposed in this study were tested and applied. The results show that the expert knowledge base of "false target" can eliminate the oil spill "false target" well, and combine with the object-oriented classification method to classify the oil spill information on the surface of spaceborne SAR image, compared with the method without "false target" elimination. The efficiency and accuracy of the classification algorithm are greatly improved. Spaceborne SAR satellite, as an important tool of environmental disaster monitoring, has been paid attention to by many countries all over the world. Its development is characterized by constellation, multi-band and multi-polarization. Therefore, it can provide better data support for the oil spill information extraction and monitoring scheme proposed in this paper, and the accuracy of oil spill target recognition will be further improved.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:U698.7
【相似文献】
相关期刊论文 前10条
1 李宗品;中国海面溢油鉴别技术考察团访问美国[J];海洋环境科学;1985年02期
2 蕙季;我国首次利用卫星对“海面溢油”进行监视[J];交通环保;2005年01期
3 戴云从;海面溢油鉴别技术海上协同执法实验在青岛进行[J];海洋环境科学;1989年04期
4 宫景霞;正构烷烃气相色谱指纹法鉴别海面溢油源[J];福建环境;2002年06期
5 陈伟琪,张珞平;正构烷烃气相色谱指纹法鉴别海面溢油源一事例研究[J];台湾海峡;2002年03期
6 陈伟琪,张珞平;鉴别海面溢油的正构烷烃气相色谱指纹法[J];厦门大学学报(自然科学版);2002年03期
7 李宗品;海面溢油鉴别技术讲习班在大连举行[J];海洋环境科学;1987年04期
8 陈庆华;杨章跃;;同方江新海洋环保船驰援大连“7.16”事故海面溢油清理[J];中国军转民;2010年08期
9 戴云从,李伟;海面溢油鉴别技术在查处船舶油排污方面的应用初探[J];海洋环境科学;1985年03期
10 徐恒振,李宗品;模糊最大矩阵元鉴别海面溢油[J];环境科学;1992年04期
相关会议论文 前10条
1 姜良美;王芳;;基于ASAR数据的玉米作物区土壤水分反演[A];遥感定量反演算法研讨会摘要集[C];2010年
2 洪顺英;刘智荣;申旭辉;单新建;戴娅琼;荆凤;;基于升降轨ASAR的于田Ms7.3级地震同震形变场信息提取与分析[A];中国地震学会空间对地观测专业委员会2009年学术研讨会论文摘要集[C];2009年
3 汪驰升;单新建;张国宏;王长林;;基于ASAR升降轨数据解算于田M_S7.3地震3D同震形变场[A];中国地震学会空间对地观测专业委员会成立大会暨学术研讨会论文集[C];2008年
4 史晓明;凌飞龙;;ASAR影像在福州地区水稻监测中的处理与应用[A];第十四届全国图象图形学学术会议论文集[C];2008年
5 李秉柏;杨沈斌;申双和;谭炳香;何维;;基于ENVISAT ASAR数据的水稻遥感监测[A];2007年中国农业工程学会学术年会论文摘要集[C];2007年
6 林彬;;航空激光遥感识别海面溢油数据处理算法的比较研究[A];第十四届全国遥感技术学术交流会论文摘要集[C];2003年
7 程学军;谭德宝;汪朝辉;张穗;;基于ASAR数据的洪水淹没范围快速监测研究[A];节能环保 和谐发展——2007中国科协年会论文集(二)[C];2007年
8 俞沅;;高清晰度卫星遥感监视海面溢油的应用进展[A];中国航海学会1999年度学术交流会优秀论文集[C];1999年
9 李秉柏;张萍萍;谭炳香;王志明;;水稻极化散射特征分析及稻田分类方法研究[A];农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第一分册[C];2005年
10 赵朝方;李晓龙;马佑军;齐敏s,
本文编号:2282361
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2282361.html