当前位置:主页 > 科技论文 > 材料论文 >

新型Ga掺杂ZnO基透明导电薄膜的制备与研究

发布时间:2018-03-13 16:23

  本文选题:透明导电薄膜 切入点:HGZO 出处:《浙江大学》2015年博士论文 论文类型:学位论文


【摘要】:掺杂ZnO薄膜中,Ga掺杂ZnO (GZO)透明导电薄膜可以用于各种电子器件,例如太阳能电池、平板显示器、光伏器件等,是最有前景的透明导电氧化物(TCO)之一。与别的GZO薄膜沉积技术相比,由于磁控溅射技术更具有优势,例如高的沉积速率、制备过程的稳定性和可靠性、并能在大面积衬底上制备高质量薄膜,该技术是制备GZO最广泛的方法。为了将GZO透明导电薄膜应用于有机太阳能电池、有机发光二极管(LED)及柔性光电器件等,必须低温下制备GZO透明导电薄膜。然而在室温下很不容易获得兼具良好的导电性能及透光性能的GZO薄膜。为了综合提高GZO基透明导电薄膜的电学及光学性能,我们采用各种制备技术及各种结构的薄膜,研究了其性能。我们的主要工作包括以下内容:1.在室温下,在Ar+H2混合气氛的情况下采用射频磁控溅射方法制备了HGZO透明导电薄膜。为了在实验次数较少的情况下,获得较好的结果,我们通过正交实验设计方法研究了H2对Ar的分压比、溅射功率、溅射压强、溅射时间对HGZO透明导电薄膜的平均透射率、方块电阻及性能指数的影响。通过极差分析确定最影响薄膜性能的参数,而得到最佳生长条件。最佳条件下制备得到的HGZO透明导电薄膜的性能指数为33.94×10-3 Ω-1,即最低方块电阻为10.62 Ω/sq (ρ=3.40×10-4Ωcm)、最高可见光透射率为90.03%。这能够满足器件应用的要求。2.为了克服(GZO/Cu薄膜/GZO的低透射率的问题,我们通过电子束蒸发沉积的Cu栅格与通过射频磁控溅射沉积的GZ0结合起来,在室温下制成了GZO/Cu栅格/GZO三明治结构薄膜,研究其透明电极的电学及光学性能。对GZO/Cu栅格/GZO三明治结构多层薄膜的透射率与方块电阻的计算值与实验中得到的数值相似。Cu栅格的间距为1mm的情况下,获得最高性能指数为5.18×10-3Ω-1,此时透射率与电阻率分为82.72%与2.17×10-4Ωcm。同理,我们在室温下制备了GZO/Cu栅格两层透明导电薄膜,研究了其透明电极的电学及光学性能。Cu栅格的间距为1mm的情况下,获得最高性能指数为6.19×10-3Ω1,此时透射率与电阻率分为83.74%与1.10×10-4Ωcm。该两层结构透明电极的性能比GZO/Cu栅格/GZO三明治结构透明电极的性能更好。这种具有较好的透射率与电阻率的多层与两层透明导电薄膜在薄膜太阳能电池领域有很好的应用前景。3.在室温下,在polycarbonate(PC)衬底上采用直流磁控溅射技术沉积GZO透明导电薄膜。通过X光衍射(XRD)分析与基片曲率法研究了对薄膜的残余应力的薄膜厚度与溅射功率的影响。当厚度为225 nm、溅射功率为140 W的时候,我们获得最大的晶粒尺寸及最小的压缩应力。通过独立的两种薄膜压缩应力测定方法,XRD法和基片曲率法,印证了上述的研究结果。通过实验,我们发现优化溅射参数,比如溅射功率、溅射时间(与薄膜厚度有关),在室温生长在有机衬底上的GZ0薄膜能够有效地释放应力。
[Abstract]:Ga doped ZnO thin films can be used in various electronic devices, such as solar cells, flat panel displays, photovoltaic devices, etc. TCO is one of the most promising transparent conductive oxides. Compared with other GZO thin film deposition techniques, the magnetron sputtering technique has more advantages, such as high deposition rate, stability and reliability of the preparation process. High quality thin films can be prepared on large area substrates. This technique is the most widely used method to fabricate GZO. In order to apply GZO transparent conductive thin films to organic solar cells, organic light-emitting diodes (LEDs) and flexible optoelectronic devices, etc. GZO transparent conductive thin films must be prepared at low temperature. However, it is not easy to obtain GZO thin films with good conductivity and light transmittance at room temperature. In order to improve the electrical and optical properties of GZO based transparent conductive films, We have studied the properties of thin films with various preparation techniques and structures. Our main work includes the following: 1. At room temperature, HGZO transparent conductive thin films were prepared by RF magnetron sputtering in ar _ 2 mixed atmosphere. In order to obtain better results under less experimental times, we studied the partial pressure ratio of H _ 2 to ar by orthogonal experimental design. The effects of sputtering power, sputtering pressure and sputtering time on the average transmittance, square resistance and performance index of HGZO transparent conductive films were studied. The optimum growth conditions were obtained. The performance index of the transparent conductive HGZO thin films was 33.94 脳 10 ~ (-3) 惟 -1, i.e., the lowest square resistance was 10.62 惟 / r ~ (-1) sq (蟻 ~ (3.40) 脳 10 ~ (-4) 惟 cm ~ (-1)), and the highest transmittance of visible light was 90.03 / cm ~ (-1). The problem of low transmittance of GZO / Cu / / GZO films is overcome. We have combined the Cu grid deposited by electron beam evaporation with the GZ0 deposited by RF magnetron sputtering to fabricate the GZO/Cu grid / GZO sandwich structure film at room temperature. The electrical and optical properties of the transparent electrode were studied. The calculated values of the transmissivity and the square resistance of the multilayer film with GZO/Cu lattice / GZO sandwich structure were similar to the calculated values obtained in the experiment. The spacing of the Cu grid was 1 mm. The highest performance index is 5.18 脳 10-3 惟 -1, and the transmittance and resistivity are 82.72% and 2.17 脳 10-4 惟 cm. At room temperature, we have prepared two transparent conductive films with GZO/Cu grid. The electrical and optical properties of the transparent electrode and the distance between the grids of Cu and Cu are studied. The highest performance index is 6.19 脳 10 ~ (-3) 惟 ~ (-1), and the transmittance and resistivity are 83.74% and 1.10 脳 10 ~ (-4) 惟 cm ~ (-1) respectively. The performance of the two-layer transparent electrode is better than that of the GZO/Cu grid / GZO sandwich transparent electrode. The multilayer and two-layer transparent conductive thin films have good application prospect in the field of thin film solar cells. GZO transparent conductive thin films were deposited on polycarbonate (PC) substrates by DC magnetron sputtering. The effects of film thickness and sputtering power on the residual stress of the films were studied by X-ray diffraction (XRD) and substrate curvature method. Nm, when the sputtering power is 140 W, The maximum grain size and the minimum compressive stress are obtained. The above results are confirmed by two independent thin film compression stress measurement methods: XRD and substrate curvature. Through experiments, we find that the sputtering parameters are optimized. For example, sputtering power, sputtering time (depending on the thickness of the film), GZ0 films grown on organic substrates at room temperature can effectively release the stress.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O614.241;TB383.2

【相似文献】

相关期刊论文 前10条

1 吉崎友纪;梁兆权;;透明导电薄膜[J];国外塑料;1988年01期

2 林毅;宋鹂;陈奇;陆剑英;李会平;;有机-无机透明导电薄膜的研究进展[J];材料导报;2005年11期

3 汝淮;;帝人推出新型透明导电薄膜[J];国外塑料;2010年08期

4 ;集成柔性高透明导电薄膜技术[J];电脑与电信;2011年09期

5 胡旭伟;;透明导电薄膜制作技术发展[J];今日印刷;2012年08期

6 刘晓菲;王小平;王丽军;杨灿;王子凤;;透明导电薄膜的研究进展[J];激光与光电子学进展;2012年10期

7 马冀君;李健;耿宏章;王宁;张念一;胡晓燕;;通过喷涂的方法使用单壁碳纳米管制备柔性透明导电薄膜[J];金属功能材料;2013年02期

8 李春鸿;;透明导电薄膜及其应用[J];仪表材料;1979年05期

9 李春鸿;姜克斌;;透明导电薄膜的制备及其组成分析[J];仪表材料;1983年03期

10 王建恩,王运涛,王军,张兵临,何金田,,张艳兰;三氧化二铟基透明导电薄膜光、电特性的研究[J];功能材料;1995年02期

相关会议论文 前10条

1 蔡s

本文编号:1607172


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1607172.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户07a2d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com