多孔碳复合材料的制备及吸附六价铬的研究
本文选题:多孔碳复合材料 切入点:吸附 出处:《济南大学》2017年硕士论文
【摘要】:活性炭能够有效的吸附废水中的重金属Cr(VI),但活性炭质量较轻,且富集了Cr(VI)后的吸附剂如果处理不得当,又会对环境造成二次污染。针对这一问题,考虑将活性炭包覆在硅砂或玻璃纤维织物上,获得多孔碳-硅砂/玻纤复合材料,其吸附Cr(VI)后便于回收并作为玻璃着色剂制备颜色玻璃。本论文利用TEM、XRD、SEM、XPS、FTIR和氮吸附等测试手段对样品进行了表征,并研究了反应组分和实验条件对制备多孔碳材料结构性能的影响以及吸附条件对多孔碳复合材料吸附Cr(VI)的影响。论文的主要研究内容和结论如下:1.探讨了不同比例含铬活性炭添加量及加料方式对玻璃着色的影响,确定了活性炭吸附铬离子用于玻璃着色的可行性。结果表明,随着色剂添加量减小,玻璃由黑棕色逐渐变为绿色;Cr的量相同时,活性炭本身对玻璃着色有调节作用;加料方式对玻璃着色影响不大。2.以葡萄糖为碳源采用水热反应结合活化工艺制备多孔碳-硅砂复合材料(AC@sand)。研究表明:水热反应后硅砂上包覆的焦炭量随乙二胺的增加,先增加后减小;AC@sand的比表面积随着SDS量的增加而增大,这是由于SDS既作为软模板剂又可增加包覆在硅砂上的碳量;比表面积随着KOH用量的增加先增加后减小再增加,由于KOH在高温下与碳包覆层和硅砂均可发生反应;比表面积随活化温度升高先增加后减小;潮解时间从第1天到第7天,比表面积显著增加,进一步延长潮解时间比表面积增加较少。合成AC@sand的最佳实验配比:乙二胺用量为0.5mL,SDS用量为0.2g,活化剂KOH用量为0.1g,活化温度为700℃,潮解时间为7天。制备的AC@sand比表面积高达59 m~2/g,是原始硅砂的80倍。AC@sand吸附Cr(VI)离子的最佳条件:AC@sand为1g,pH值为2,Cr(VI)离子浓度为20mg/L,吸附时间为2h,温度为75℃。在此条件下,Cr(VI)的去除率为100%,其中被吸附的Cr占76.91%,其余Cr(VI)则被还原后留在溶液中。单位AC@sand对Cr离子的吸附量为1.5382mg/g。AC@sand对Cr(VI)的吸附符合Freunedlich吸附模型和二级动力学模型。3.采用PVP做碳源、KOH做活化剂制备多孔碳-玻纤复合材料(AC@GFF)。研究表明:样品比表面积随PVP用量、活化剂KOH用量和活化温度的增加均增大。PVP既是碳源又是粘结剂;KOH既是活化剂又可增加PVP的粘性,协助更多的PVP附着在玻纤表面。合成AC@GFF的最佳实验配比:PVP用量为5g,活化剂KOH用量为0.8g,活化温度为700℃。制备的AC@GFF比表面积高达248 m~2/g,是玻璃纤维织物的248倍。AC@GFF吸附Cr(VI)离子的最佳条件:AC@GFF为0.2g,pH值为2,Cr(VI)离子浓度为50mg/L,时间为2h,温度为45℃。在此条件下,Cr(VI)去除率为96.54%,其中被吸附的Cr占90.47%,其余Cr(VI)则被还原后留在溶液中。单位AC@sand对Cr离子的吸附量为22.6170mg/g。AC@GFF对Cr(VI)的吸附符合Langmuir吸附模型和二级动力学模型。4.在最佳吸附条件下,吸附Cr(VI)后的AC@sand和AC@GFF作为玻璃着色剂均成功制得翠绿色玻璃。AC@sand和AC@GFF在玻璃混合料中的比例分别为44.07%和3.00%。
[Abstract]:Activated carbon to heavy metal adsorption of Cr in wastewater effectively activated carbon (VI), but the quality is light, and the accumulation of Cr (VI) after the adsorbent, if not handled properly, it will cause two pollution to the environment. To solve this problem, consider the activated carbon coated fabric in silica or glass fiber on porous carbon / silica glass fiber composite materials, the adsorption of Cr (VI) is recovered and prepared as glass colorant color glass. This paper uses TEM, XRD, SEM, XPS, the samples were characterized by FTIR and nitrogen adsorption measurements and study the reaction effect and experimental conditions the preparation of porous carbon materials and the adsorption conditions on the porous carbon composite material for adsorption of Cr (VI). The influence of the main contents and conclusions are as follows: 1. effects of different proportion of chromium containing activated carbon and the influence of the amount of feeding mode on glass coloring, the activated carbon Adsorption of chromium ion for the feasibility of colouring of glass. The results showed that with the addition of reducing agent, glass has gradually changed from dark brown to green; the amount of Cr phase at the same time, activated carbon itself has a regulatory effect on glass coloring; feeding mode has little effect on the colouring of glass.2. with glucose as carbon source by hydrothermal reaction with porous carbon silica composite process activation (AC@sand). The results show that: the coating amount of coke after the hydrothermal reaction of silica sand with ethylenediamine increases, increased first and then decreased; the specific surface area of AC@sand increased with the increase of SDS content, this is because the SDS as a soft template and can increase the amount of carbon coated on the specific surface area of silica sand; with the increase of KOH content increased first and then decreased and then increased due to KOH at high temperature and carbon coated layer and silica sand can occur reaction; specific surface area with the increase of activation temperature increased first and then decreased; deliquescence time From first days to seventh days, significantly increase the surface area, further extend the deliquescence time less than the increase of surface area. The optimum ratio of AC@sand synthesis of ethylenediamine was 0.5mL, SDS dosage of 0.2g, activator of KOH dosage of 0.1g, the activation temperature is 700 DEG C, deliquescence time is 7 days. The preparation of AC@sand 59 m~2/g high specific surface area is 80 times the.AC@sand adsorption of Cr original silica sand (VI): AC@sand is the best conditions of ion 1g, pH 2, Cr (VI) ion concentration is 20mg/L, adsorption time is 2h, the temperature of 75 DEG. Under this condition, Cr (VI) removal rate 100%, the adsorbed Cr accounted for 76.91%, the rest of the Cr (VI) was reduced in solution. The adsorption capacity of Cr ion is AC@sand 1.5382mg/g.AC@sand on Cr (VI) consistent with the Freunedlich adsorption model and two stage dynamic model of.3. using PVP as carbon source, KOH activating agent for preparing porous carbon - (glass fiber composite materials AC@GFF). The study shows that the specific surface area increased with the dosage of PVP, dosage of activator KOH and activation temperature increased.PVP as carbon source and KOH as activating agent and binder; PVP can increase the viscosity, help more PVP attached to the glass surface. The optimum ratio for the synthesis of AC@GFF: the dosage of PVP was 5g KOH, the activator dosage of 0.8g, activation temperature is 700 degrees Celsius. The prepared AC@GFF was 248 higher than the m~2/g surface area is 248 times the.AC@GFF adsorption of Cr glass fiber fabrics (VI): AC@GFF is the best conditions of ion 0.2g, pH 2, Cr (VI) ion concentration is 50mg /L. Time is 2h, the temperature of 45 DEG. Under this condition, Cr (VI) removal rate was 96.54%, which was the adsorption of Cr accounted for 90.47%, the rest of the Cr (VI) was reduced in solution. The adsorption capacity of Cr ion is AC@sand 22.6170mg/g.AC@GFF on Cr (VI) consistent with the Langmuir adsorption model and the two level dynamic model.4 Under the optimum adsorption condition, AC@sand and AC@GFF after Cr (VI) adsorption were successfully used to prepare emerald green glass, and the proportion of.AC@sand and AC@GFF in glass mixture was 44.07% and 3.00%. respectively.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB33;O647.3
【参考文献】
相关期刊论文 前10条
1 吴彩斌;闵露艳;习海滨;刘杰;;粉煤灰活性炭吸附含Cr废水试验研究[J];有色金属科学与工程;2014年03期
2 赵梦奇;司马义·努尔拉;米红宇;;基于多孔碳材料对重金属离子吸附性能的研究进展[J];材料科学与工程学报;2014年02期
3 曾东;洪鸿加;韩秋萍;刘捷;;不同表面改性活性炭吸附Cr(Ⅵ)的研究[J];广东化工;2013年16期
4 余正发;王旭珍;刘宁;刘洋;;N掺杂多孔碳材料研究进展[J];化工进展;2013年04期
5 庞晋山;邓爱华;毛凌波;彭晓俊;朱杰;;磁性炭包铁纳米粒子对重金属离子的吸附性能[J];新型炭材料;2013年01期
6 任南琪;周显娇;郭婉茜;杨珊珊;;染料废水处理技术研究进展[J];化工学报;2013年01期
7 崔春月;郑庆柱;杨文方;;不同改性多壁碳纳米管对Cr~(3+)的吸附性能[J];环境工程学报;2012年11期
8 吴雪艳;王开学;陈接胜;;多孔碳材料的制备[J];化学进展;2012年Z1期
9 杨辉;徐月;张宇;杜鹃;;柠檬酸改性颗粒活性炭吸附水中Cr~(6+)的试验[J];沈阳建筑大学学报(自然科学版);2012年02期
10 辛术贞;李花粉;苏德纯;;我国污灌污水中重金属含量特征及年代变化规律[J];农业环境科学学报;2011年11期
相关会议论文 前1条
1 文萃;程福奎;彭亮波;陈红雨;舒东;;水热法制备炭包覆MnO_2电极材料及其赝电容行为[A];第七届中国功能材料及其应用学术会议论文集(第4分册)[C];2010年
相关博士学位论文 前3条
1 刘振宇;新型多孔碳材料的合成与应用研究[D];北京化工大学;2013年
2 袁晓玲;氮掺杂多孔炭材料的制备、表征及性能研究[D];吉林大学;2012年
3 刘献斌;孔径均匀有序的中孔碳/氧化硅复合材料与中孔碳材料的合成与表征[D];中国科学院研究生院(大连化学物理研究所);2006年
相关硕士学位论文 前5条
1 刘俊雄;碳包覆二氧化锡纳米纤维的制备及电化学研究[D];新疆大学;2013年
2 韩亚;介孔材料功能化及其吸附重金属离子的研究[D];浙江师范大学;2012年
3 王文娟;新型多孔碳材料的制备及其电化学性能研究[D];华东师范大学;2010年
4 袁雪;化学沉淀—铁氧体法处理重金属离子废水的实验研究[D];重庆大学;2007年
5 孙玉峰;碳包覆金属纳米颗粒的制备及其应用研究[D];大连理工大学;2006年
,本文编号:1689630
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1689630.html