当前位置:主页 > 科技论文 > 材料论文 >

纳米尺度旋转椭球夹杂复合材料的等效模量

发布时间:2018-04-17 02:20

  本文选题:复合材料 + 等效模量 ; 参考:《兰州理工大学》2017年硕士论文


【摘要】:计算颗粒增强复合材料的等效模量是复合材料力学的重要组成部分,估算等效模量的方法有两种。一种是上下限法,一种是直接估计法。这两种方法都是将模型作了简化,考虑的是具有随机分布的圆柱型或球型夹杂的复合材料。后来,Bornert通过有限元方法得到了含有椭圆夹杂复合材料的等效模量。为了解决网格的划分和计算量数倍增加的问题,Riccardi和Montheillet改进了Luo和Weng提出的3PM方法,估计了椭球夹杂随机分布复合材料的等效模量。尽管如此,他们也没有考虑到当椭球夹杂的尺度是纳米级时需要考虑界面影响的情况。本文发展了上述的方法,根据能量等效原理和计算得到纳米旋转椭球夹杂的局部应力场解,估计含有随机分布纳米椭球夹杂复合材料的等效模量。
[Abstract]:Calculating the equivalent modulus of particle reinforced composites is an important part of composite mechanics. There are two methods to estimate the equivalent modulus.One is the upper and lower bound method, the other is the direct estimation method.Both methods simplify the model and consider composite materials with cylindrical or spherical inclusions with random distribution.Later, Bornert obtained the equivalent modulus of composite material with elliptical inclusion by finite element method.In order to solve the problem of mesh generation and the increase of computational complexity, Riccardi and Montheillet improved the 3PM method proposed by Luo and Weng, and estimated the equivalent modulus of ellipsoidal inclusion randomly distributed composite materials.However, they do not take into account the influence of the interface when the scale of the ellipsoid inclusion is nanoscale.Based on the principle of energy equivalence and calculation, the local stress field solution of the inclusion of nano-rotating ellipsoid is obtained, and the equivalent modulus of the composite with random distribution of nano-ellipsoid inclusion is estimated.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB33

【参考文献】

相关期刊论文 前2条

1 ;A UNIFIED ENERGY APPROACH TO A CLASS OF MICROMECHANICS MODELS FOR MICROCRACKED SOLIDS[J];Acta Mechanica Solida Sinica;1995年02期

2 黄永刚;黄克智;胡凯雄;A.Chandra;;A UNIFIED ENERGY APPROACH TO A CLASS OF MICROMECHANICS MODELS FOR COMPOSITE MATERIALS[J];Acta Mechanica Sinica;1995年01期



本文编号:1761638

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1761638.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户07644***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com