纳米磷酸钛及树脂负载磷酸钛复合材料高效净化水中氟离子的性能研究
发布时间:2018-06-21 15:55
本文选题:氟化物 + 磷酸钛 ; 参考:《燕山大学》2015年硕士论文
【摘要】:本文针对吸附材料处理含氟水时出现的吸附效果差、难以重复利用的问题,成功制备了两种新型的除氟材料:纳米结构的磷酸钛粉体和大孔阴离子交换树脂负载磷酸钛复合材料(Ti P-201),并考察了其对氟离子的吸附性能。首先采用了透射电镜(TEM)、扫描电镜(SEM)和X射线衍射(XRD)的表征方法对这两种材料进行表征分析,进而考察了体系p H值、竞争离子对吸附行为的影响,并完成等温吸附、动力学和模拟柱吸附脱附实验。本研究制备的磷酸钛粉体是一种纳米花状结构的α晶型Ti(HPO4)2?H2O。Ti P-201复合材料的透射电镜和扫描电镜图可以看到Ti P-201球体内部具有丰富的孔道结构,纳米磷酸钛均匀地分布在整个D201的孔道内。磷酸钛粉体在p H=2.0~5.0之间具有较好的除氟效果,最佳吸附p H值为3.0。竞争离子与氟离子的摩尔比为64:1时,磷酸钛粉体对氟离子的去除率仍保持在45%以上,表明该材料具有很好的选择吸附性。等温吸附实验得出磷酸钛的最大吸附容量为114.2 mg/g,并且温度对除氟效果的影响不大。磷酸钛粉体对氟离子具有较快的吸附速率,吸附平衡时间为60 min。在满足生活饮用水卫生标准(GB 5749-2006)条件下,1 kg磷酸钛可以处理800 kg的含氟水,吸附饱和时处理含氟水量为1400 kg。Ti P-201最佳吸附p H值为3.0,此时去除率为79.2%,另外p H值更高的碱液可以使Ti P-201脱附再生。竞争离子与氟离子的摩尔比为64:1时,Ti P-201对氟离子的去除率可维持在50%以上,表现出较为明显的选择吸附性。等温吸附实验结果表明实验温度对Ti P-201的除氟性能影响不是很大,最大吸附容量为33.8 mg/g。Ti P-201对氟离子的吸附平衡时间为80 min,去除率到达了61.1%,伪一级动力学模型能够更好地拟合Ti P-201的吸附动力学曲线(R2=0.910)。以WHO饮用水水质准则(氟化物1.5 mg/L)为参照,进水氟离子浓度为2 mg/L,流速20 BV/h的情况下,Ti P-201的穿透量为475 BV。采用5%Na OH和5%Na Cl的混合液作为脱附剂,10 BV体积的脱附液就可以使吸附氟离子饱和的Ti P-201脱附率达到100%。柱吸附-脱附实验表明Ti P-201吸附剂可以再生循环利用。Ti P-201复合材料具有很好的实际应用前景。
[Abstract]:This paper aims at the problem that the adsorption effect of adsorbed materials is poor and it is difficult to reuse when treating fluorine-containing water. Two novel defluorinated materials, titanium phosphate powder with nanostructure and titanium phosphate composite loaded with macroporous anion exchange resin, were successfully prepared and their adsorption properties for fluorine ions were investigated. The methods of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the two materials. The effects of pH value and competitive ions on the adsorption behavior were investigated, and the isothermal adsorption was completed. Kinetic and simulated column adsorption and desorption experiments. The titanium phosphate powder prepared in this study is a kind of 伪 -crystalline TiPPO _ 4H _ 2H _ 2O 路Ti P-201 composite with a flower-like structure. The TEM and SEM images show that there are abundant pore structures in the Ti P-201 sphere. Nanometer titanium phosphate distributes uniformly in the pore of D201. Titanium phosphate powder has a better defluorination effect between 2.0 and 5.0, and the optimum adsorption pH value is 3.0. When the molar ratio of competing ion to fluorine ion is 64:1, the removal rate of fluoride ion of titanium phosphate powder is still above 45%, which indicates that the material has good selective adsorption. The isothermal adsorption experiment showed that the maximum adsorption capacity of titanium phosphate was 114.2 mg / g, and the temperature had little effect on the defluorination effect. Titanium phosphate powder has a fast adsorption rate for fluorine ions, and the adsorption equilibrium time is 60 min. Under the condition of meeting the sanitary standard of drinking water (GB5749-2006), 1 kg titanium phosphate can be used to treat 800 kg fluorine containing water. The optimum adsorption pH value of 1400 kg 路Ti P-201 is 3.0, and the removal rate is 79.2%. In addition, the desorption of Ti P-201 can be regenerated by lye solution with higher pH value. When the molar ratio of competitive ion to fluorine ion is 64:1, the removal rate of fluorine ion can be maintained at more than 50%. The isothermal adsorption results show that the experimental temperature has little effect on the defluorination performance of Ti P-201. The maximum adsorption capacity is 33.8 mg / g 路Ti P-201 and the adsorption equilibrium time is 80 min, and the removal rate reaches 61.1%. The pseudo-first-order kinetic model can better fit the adsorption kinetics curve of Ti P-201. According to WHO drinking water quality criterion (fluoride 1.5 mg / L), the influent fluoride concentration is 2 mg / L, and the penetration of Ti P-201 is 475 BV at 20 BV / h flow rate. The desorption rate of Ti P-201 adsorbed on fluorine ions can reach 100 by using the mixture of 5 NaOH and 5NaCl as desorption agent 10 BV. The column adsorption-desorption experiment shows that the Ti P-201 adsorbent can regenerate and recycle the composite material.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU991.2;TB33
【参考文献】
相关期刊论文 前7条
1 刘东生 ,陈庆沐 ,余志成 ,袁芷云;我国地方性氟病的地球化学问题[J];地球化学;1980年01期
2 吕建国;张明霞;索超;;电渗析技术的研究进展[J];甘肃科技;2010年18期
3 李华;孔令东;;改性阳离子交换树脂的制备及其除氟性能研究[J];中北大学学报(自然科学版);2008年04期
4 李国平;邱阳;夏明芳;王志良;张利民;;氟苯生产废水处理及资源化技术[J];化工环保;2007年05期
5 李晓云,王建萍,宋宽秀,蔡云飞;负载铈(IV)的D412螯合树脂除氟性能的研究[J];离子交换与吸附;2001年02期
6 马飞,欧明君,葛才林,王泽港;氟污染对作物光合产物输配的影响[J];农业环境保护;2001年02期
7 杨丽君;刘雪岩;姜鑫;李莹;常怀春;张蕾;;纳米TiO_2去除氟离子的性能[J];应用化学;2012年11期
相关博士学位论文 前2条
1 陈平;载体诱导沉淀结晶法软化水及脱氟的研究[D];西安建筑科技大学;2004年
2 姚瑞华;基于镧系金属改性壳聚糖的脱氟新技术研究[D];中国海洋大学;2009年
相关硕士学位论文 前2条
1 杨港;类水滑石合成及其对水体中氟离子的去除[D];大连理工大学;2009年
2 杨磊;稀土负载粉煤灰吸附剂的制备及其对地下水中氟的去除研究[D];内蒙古大学;2009年
,本文编号:2049357
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2049357.html
最近更新
教材专著