SQUID量子超材料体系的非经典特性研究
本文选题:量子超材料 + 超导量子干涉器 ; 参考:《湖南师范大学》2016年硕士论文
【摘要】:超材料指的是一些具有人工设计的结构并呈现出天然材料所不具备的超常物理性质的复合材料。超材料具备天然材料所不具备的特殊性质,而且这些性质主要来自人工的特殊结构。超材料是通过在多种物理结构上的设计来突破某些表观自然规律的限制,从而获得超常的材料功能。超材料的出现表明可人工获得与自然界中的物质具有迥然不同的超常物理性质的“新物质”,把功能材料的设计和开发带入一个崭新的天地。对于电磁超材料,以往人们分析问题都是从麦克斯韦方程出发,结构简单时问题的复杂度还可以接受,但是结构一复杂起来,就能难以分析。超材料的话就不管最小单元里面的结构有多复杂,只管其整体等效出来的电磁参数,这种等效并且具有很高的精确度,这就大大降低了材料设计的复杂度。另一方面,超材料的出现也极大扩展了人们对电磁材料的选择范围,从负值到正值,从无穷小到无穷大,从单负材料到双负材料,从均匀的材料到渐变的材料,等等。这都是超材料的贡献。当然这个概念也不仅限于电磁波,它已经延伸到了声波,热传导,静电场,静磁场,地震波,等等。这个种设计微观结构来控制其宏观特性的思维被广泛应用到各种领域。量子超材料把超材料开展到了量子层次。它可以利用量子力学规律和方法来操控超材料中电磁波的传播和量子态。因此,量子超材料体系不仅要满足麦克斯韦Maxwell方程,还有满足Schr?dinger方程。量子超材料体系的性质可反映其在微纳尺度上电磁波和物质波共存的特征。量子超材料本质上是具有空间上扩展性的量子体系,它允许在量子力学层次操控电磁波在其中的传播。它具有以下三个特征:(1)由具有可操控参数的相干量子单元器件组成;(2)相干量子单元器件的量子态具有可操控性;(3)相干量子单元器件应该具有较长的量子相干性时间。本文研究以超导量子干涉器(SQUID)为基本单元的量子超材料体系的非经典特性。具体研究了SQUID量子超材料体系中光场的非经典性质、SQUID超材料的非经典性质以及光与SQUID量子超材料之间的量子关联和量子纠缠。本文的组织结构如下:第一章介绍本文的研究背景和现状。在简单介绍了超导传输线的量子化过程和两种类型的SQUID,系统讨论了SQUID量子超材料的经典描述和量子描述。第二章研究SQUID量子超材料体系中光场的非经典性质。在SQUID量子超材料体系的量子动力学的基础上,选择几种典型的初态研究SQUID量子超材料体系中光子的非经典统计性质和光场的正交压缩特性。第三章研究SQUID量子超材料自身的非经典性质。通过引入SQUID量子超材料的集体算符把SQUID量子超材料体系转化为一个有效的单模玻色子系统,研究了SQUID量子超材料集体激发的量子统计性和量子压缩特性。第四章研究光场与SQUID超材料之间的量子关联和量子纠缠。对于几种典型的初态计算了光场与SQUID超材料之间的二阶交叉关联函数,讨论了Cauchy-Schwarz不等式违背的条件,即出现非经典关联的条件。研究了光场和SQUID超材料的量子纠缠动力学性质。第五章是本文的结和展望。
[Abstract]:Supermaterial refers to a number of composite materials with artificially designed structures and unusually physical properties that natural materials do not possess. Supermaterials have special properties that natural materials do not possess, and these properties are mainly derived from artificial special structures. Supermaterials are through the design of a variety of physical structures to break some of them. The emergence of supermaterials shows that the design and development of functional materials can be brought into a new world. The complexity of the problem is still acceptable when the Maxwell equation is simple, but it is difficult to analyze the complexity of the structure when the structure is complicated. The complexity of the design. On the other hand, the appearance of supermaterials also greatly expanded the selection range of electromagnetic materials, from negative to positive, from infinitesimal to infinity, from single to double negative material, from uniform material to gradual material, etc., which are all contributions of supermaterials. It has been extended to sound waves, heat conduction, electrostatic fields, static magnetic fields, seismic waves and so on. This kind of thinking that designs microstructures to control their macroscopic properties is widely used in various fields. Quantum supermaterials carry supermaterials to the quantum level. It can use quantum mechanics laws and methods to manipulate the propagation of electromagnetic waves in supermaterials and to control the propagation of electromagnetic waves in supermaterials. Quantum state. Therefore, the quantum supermaterial system not only satisfies the Maxwell Maxwell equation, but also satisfies the Schr? Dinger equation. The properties of the quantum supermaterial system can reflect the characteristics of the coexistence of electromagnetic wave and material wave on the micro and nanoscale. The quantum supermaterial is essentially a quantum system with spatial extensibility, which allows the quantum mechanics to be in quantum mechanics. The layer controls the propagation of electromagnetic waves in it. It has the following three characteristics: (1) composed of coherent quantum cell devices with manipulable parameters; (2) the quantum state of the coherent quantum cell device has controllability; (3) the coherent quantum cell device should have a long quantum coherence time. This paper studies the superconducting quantum interference (SQUID) quantum interferometer. For the nonclassical properties of the quantum supermaterial system of the basic unit, the nonclassical properties of the light field in the SQUID quantum supermaterial system, the non classical properties of the SQUID supermaterials and the quantum correlation and quantum entanglement between the light and the SQUID quantum supermaterials are studied. The structure of this paper is as follows: the first chapter introduces the background and the present study of this paper. The quantization process of superconducting transmission lines and the two types of SQUID are briefly introduced. The classical description and quantum description of SQUID quantum supermaterials are discussed systematically. The second chapter studies the nonclassical properties of the light field in the SQUID quantum supermaterial system. On the basis of the quantum dynamics of the SQUID quantum supermaterial system, the selection of several typical initial The non classical statistical properties of photons in SQUID quantum supermaterial system and the orthogonal compression properties of the light field are studied. The third chapter studies the nonclassical properties of SQUID quantum supermaterials themselves. By introducing the collective operator of SQUID quantum supermaterials to transform the SQUID quantum supermaterial system into an effective single mode boson system, the SQUID quantity is studied. The quantum statistics and quantum squeezing properties of the Zi Chao material are collectively excited. The fourth chapter studies the quantum correlation and quantum entanglement between the light field and the SQUID supermaterial. For several typical initial states, we calculate the two order cross correlation function between the light field and the SQUID supermaterial, and discuss the conditions for the violation of the Cauchy-Schwarz inequality, that is, the non classical form appears. The quantum entanglement dynamics of light field and SQUID metamaterials are studied. The fifth chapter is the conclusion and Prospect of this paper.
【学位授予单位】:湖南师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O413;TB39
【相似文献】
相关期刊论文 前10条
1 邱尚涌;SQUID在地球物理中的应用[J];低温与超导;1982年03期
2 王其俊;SQUID仪器的发展动向[J];低温与超导;1984年04期
3 王其俊;混合式RF-SQUID的设计[J];低温物理;1984年03期
4 吕淑芬;;一种新型诊断技术——SQUID[J];世界科学;1991年12期
5 丁红胜,韩冰,陈赓华,张利华,杨乾声;一种抑制市电对高温SQUID干扰的新方法[J];物理学报;2002年02期
6 张峰会,丁红胜,何豫生,陈赓华,韩士吉,董世迎,颜晓明,杨乾声,陈兆甲,金铎;扫描SQUID显微镜的研制及其在磁成像和无损检测中的应用[J];低温物理学报;2004年01期
7 ;Preparation of Entanglement and Schr銉dinger Cat States of Superconducting Quantum Interference Devices Qubits via Coupling to a Microwave Cavity[J];Communications in Theoretical Physics;2008年03期
8 花涛;许伟伟;史建新;安德越;孙国柱;于扬;吴培亨;;Tuning an rf-SQUID flux qubit system’s potential with magnetic flux bias[J];Chinese Physics B;2012年09期
9 ZHANG ShuLin;ZHANG GuoFeng;WANG YongLiang;ZENG Jia;QIU Yang;LIU Ming;KONG XiangYan;XIE XiaoMing;;A novel superconducting quantum interference device for biomagnetic measurements[J];Chinese Science Bulletin;2013年24期
10 王瑞兰;一种稳定性好的点接触DC-SQUID结构[J];低温与超导;1982年02期
相关会议论文 前6条
1 D.P.Chiang;W.S.Tse;;INVESTIGATION OF Fe:YAG CRYSTALS GROWTH BY THE CZOCHRALSKI METHOD WITH RAMAN SCATTERING AND SUPER-CONDUCTING QUANTUM INTERFERENCEDEVICE(SQUID)[A];第十四届全国光散射学术会议论文摘要集[C];2007年
2 石惠敏;於亚飞;张智明;;在CircuitQED中用一个SQUID实现Toffoli门[A];第十五届全国量子光学学术报告会报告摘要集[C];2012年
3 王赤军;;高温SQUID在物探上的应用研究[A];中国地质科学院“九五”科技成果汇编[C];2001年
4 史鹏;李炬;;SQUID结合涡旋电流用于铍材残余应力检测的计算机模拟[A];中国核学会核材料分会2007年度学术交流会论文集[C];2007年
5 史鹏;李炬;董平;何立峰;赵丽芳;徐芳;;SQUID结合涡旋电流法用于铍材残余应力检测的可行性[A];中国工程物理研究院科技年报(2008年版)[C];2009年
6 王赤军;陈晓东;赵毅;王宝珍;;77K SQUID磁强计在TEM上的应用研究[A];1997年中国地球物理学会第十三届学术年会论文集[C];1997年
相关硕士学位论文 前8条
1 葛俊;磁性掺杂拓扑绝缘体输运性质的研究[D];南京大学;2015年
2 谢立军;Low-Tc SQUID瞬变电磁系统的大功率发射机关键技术研究[D];吉林大学;2016年
3 漆超;SQUID量子超材料体系的非经典特性研究[D];湖南师范大学;2016年
4 吕海峰;热力学噪声驱动下DC-SQUID系统的随机动力学[D];华中师范大学;2004年
5 江忠胜;SQUID无损检测中的相关问题研究[D];北京科技大学;2008年
6 史鹏;SQUID结合涡旋电流法用于铍材残余应力检测的可行性研究[D];中国工程物理研究院;2007年
7 蒋凤英;高温dc-SQUID的制备及其在低场核磁共振中的应用研究[D];北京邮电大学;2013年
8 钟超荣;扫描SQUID显微镜分辨率的改进及其在漏电电流无损检测中的应用研究[D];重庆大学;2005年
,本文编号:2067848
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2067848.html