中温捕获二氧化碳和缓释薄荷醇的多孔新材料
[Abstract]:It is a challenge for scientists to develop new materials to meet the needs of social development and environmental protection. These new materials not only come from new structures that have never been heard of, but also benefit from the new ideas that give new functionality to existing materials. In view of the tedious steps of removing template micelles in the synthesis of mesoporous molecular sieves and the waste of energy, we use the temperature control effect of micelles to develop a new way of adsorption-release menthol. In the face of serious environmental pollution caused by CO_2 emission from flue gas in coal-fired power plants, we are committed to develop new solid alkali materials: graphene and carbon particles are used to modify MgO (MgO), and FeO-MgO binary oxides are prepared. Emphasis is placed on increasing the proportion of strong alkali centers in the adsorbent to increase its ability to capture CO_2 at medium temperature. Combined with CO_2 transient adsorption of (IA) and temperature-programmed desorption of (TPD), we also attempted to form a new method for the detection of IA-TPD, and analyzed the mechanism of carbon-modified MgO solid base adsorption-desorption of CO_2. The main research contents are as follows: 1. According to the temperature dependence of the softness of template micelles in some mesoporous silica molecular sieve channels, Mesoporous molecular sieve MCM-41 powder (as-M41) was used to adsorb, store and release the micelles in the sample of high volatile spice menthol. As-M41 was flexible at a higher temperature, such as 373K, allowing the guest molecules to traverse and enter the pore interior. At room temperature the micelles lose flexibility and lock-up the guest molecules in the channels. When the temperature rises to 353K for example the micelle is soft and the encapsulated guest molecule can be released from the pore. The release of menthol from mesoporous molecular sieve was monitored by headspace adsorption of menthol by GC-MS. It provides a new way for controllable absorption, storage and release of volatile organic molecules. It is found that the temperature adsorption efficiency of MgO based adsorbent CO_2 is not limited to the specific surface area of the sample, because the adsorption of CO_2 at 423 K mainly depends on the strong alkaline potential, and the strong base site is derived from the absence of the surface defect site of the Mg2 cation on the MgO crystal. We use graphene and carbon particles to separate MgO particles in situ to prevent aggregation, so that the surface defects of MgO crystal are fully exposed, forming a strong alkali potential to effectively capture CO_2.. In this paper, two kinds of CO_2 contact methods, "blow sweep method" and "pulse method", are used to combine instantaneous adsorption and programmed temperature desorption to form a new method for the detection of IA-TPD. The contribution of alkali potential of various intensities in adsorbent is calculated from the amount of CO_2 gas introduced, the amount of adsorption and the amount of desorption. The method of in situ carbonization of acetate was applied to the preparation of CaO samples, which provided a new way of green environmental protection for the preparation of high efficiency CO_2 adsorbents. The temperature of industrial flue gas is usually at 423 ~ 673 K. At this temperature, the physical adsorption of solid base CO_2 is difficult, so it is urgent to develop a new high efficient medium temperature CO_2 trapping agent. 3%FM samples were prepared by in-situ carbonization with magnesium acetate, a cheap and easily available precursor. The content of ferrous oxide is only 3%, which meets the needs of green adsorbent preparation. The adsorption capacity of CO_2 at 473K was 35 mg / g ~ (-1). This method improves the ratio of strong alkali potential in MgO particles and is very favorable for capturing CO_2 at 473K, which provides a new idea for the design of high efficiency solid adsorbent for environmental protection.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.4
【相似文献】
相关期刊论文 前10条
1 伍怡郦,阚健全;l-薄荷醇的制备及检测方法研究进展[J];现代食品科技;2005年01期
2 念保义;林明穗;黄志华;罗菊香;牛玉;;合成L-薄荷醇产业化的研究进展[J];三明学院学报;2012年06期
3 喻忠厚;;日本工业合成L-薄荷醇[J];精细化工信息;1986年01期
4 王建群;;印薄荷增产威胁中国市场[J];精细与专用化学品;1993年01期
5 聂丽娟,李响敏,秦中;薄荷醇的合成新工艺[J];化学世界;2000年05期
6 马海乐,丁绍东;薄荷醇超临界CO_2提纯的工艺[J];无锡轻工大学学报;2000年01期
7 念保义;徐刚;杨立荣;;l-薄荷醇的合成及手性拆分研究进展[J];化工进展;2006年04期
8 李云霞;李琼;;薄荷醇手性拆分的研究进展[J];香料香精化妆品;2009年01期
9 盛志佳;;薄荷醇微胶囊的制备和检测[J];湖南农业科学;2010年14期
10 念保义;黄志华;罗菊香;牛玉;;脂肪酶动力学拆分薄荷醇的研究进展[J];过程工程学报;2011年01期
相关会议论文 前6条
1 宫梅;葛炯;许建铭;王晔;;卷烟及烟气中薄荷醇含量的检测[A];上海烟草系统2002年度学术论文选编[C];2002年
2 蔡文贺;林德贵;;氮酮薄荷醇对酮康唑经皮渗透的影响[A];中国畜牧兽医学会小动物医学分会第四次学术研讨会、中国畜牧兽医学会兽医外科学分会第十六次学术研讨会论文集(1)[C];2009年
3 林月彬;王晖;梁庆;陈垦;;薄荷醇止痒作用的研究[A];中国药学会应用药理专业委员会第三届学术会议、中国药理学会制药工业专业委员会第十三届学术会议暨2008生物医药学术论坛论文汇编[C];2008年
4 林建;朱立麒;秦涛;庾庆华;杨倩;;DMSO和薄荷醇增强脂质体介导的Bcap-37细胞转染效率的研究[A];中国畜牧兽医学会动物解剖学及组织胚胎学分会第十七次学术研讨会论文集(下)[C];2012年
5 蒋木庚;杨红;刘合群;周晨芳;;天然旋光性中华薄荷醇的研究[A];江苏省农药学术研讨会论文集[C];1997年
6 ;Practical Method for Diastereoselective Synthesis of(R_P)-(-)-Menthyl Phenylphosphinite[A];中国化学会第28届学术年会第19分会场摘要集[C];2012年
相关重要报纸文章 前4条
1 龙可;G丰乐 国内天然薄荷醇产销量最大[N];证券时报;2006年
2 彭姣凤 李建成 李庆廷 杨剑;高效装载的水溶性薄荷醇微胶囊的制备研究[N];中国食品报;2008年
3 济南市第五人民医院 李延斌;薄荷药理研究新进展[N];中国中医药报;2007年
4 记者 李薇;种盆花草来治病[N];医药养生保健报;2008年
相关博士学位论文 前10条
1 李牧;嗜麦芽糖寡养单胞菌脂肪酶的筛选、异源表达及在催化制备l-薄荷醇中的应用[D];浙江大学;2013年
2 杨涛;膳食因子咖啡因和薄荷醇调控血压的机制研究[D];第三军医大学;2015年
3 王永志;薄荷醇激活瞬时受体电位M8对雄激素非依赖性前列腺癌DU145细胞生物学行为影响的研究[D];武汉大学;2014年
4 赵利刚;新型薄荷醇酯类衍生物经皮促透作用评价及其促透机理的初步研究[D];沈阳药科大学;2009年
5 郑高伟;枯草芽孢杆菌酯酶的发现及其催化制备l-薄荷醇的研究[D];华东理工大学;2011年
6 于丽娟;洋葱布克氏菌(Burkholderia cepacia)酯酶酶法不对称拆分dl-薄荷醇研究[D];江南大学;2008年
7 陈辉;产碱假单胞菌脂肪酶分子改造及拆分制备l-薄荷醇的研究[D];浙江大学;2014年
8 朱海军;TRPM8 S2特异识别薄荷醇光学活性异构体的分子机理研究[D];云南大学;2013年
9 黎勤;薄荷醇通过TRPM8通道诱导人膀胱癌T24细胞株死亡的试验研究[D];南方医科大学;2010年
10 孙靖;激活温度敏感性瞬时受体电位通道调控血管功能和血压的机制研究[D];第三军医大学;2014年
相关硕士学位论文 前10条
1 王倩;木糖醇/薄荷醇共结晶体的可控制备[D];天津大学;2014年
2 周s,
本文编号:2204074
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2204074.html