当前位置:主页 > 科技论文 > 材料论文 >

高温自补偿润滑的热力耦合驱动模型及成膜机理研究

发布时间:2018-10-08 10:14
【摘要】:微孔高温自补偿润滑复合材料是将熔融复合固体润滑剂真空压力下熔浸到微孔基体中而制备的一种新型的自润滑复合材料。在高温环境下工作时,储存于其孔隙内的固体润滑剂因摩擦热-应力作用析出到摩擦界面形成润滑膜,从而实现自润滑功能。其摩擦学特性取决于复合固体润滑剂的析出量及组分组成。因此,建立热-力耦合驱动模型,研究固体润滑剂析出机制及成膜机理,对于微孔高温自补偿润滑复合材料的设计制备具有重要意义。基于多孔介质球粒装填理论和高温自补偿润滑材料微孔结构特征,建立胞体结构模型;针对摩擦过程中的热力耦合问题,对胞体模型温度场和应力场计算;针对润滑剂析出的驱动力,利用热弹性力学理论建立热力耦合驱动模型,并对环境温度、摩擦热、摩擦力等影响因素分析。利用ANSYS Workbench完成熔渗型高温自补偿润滑材料的瞬态热分析和热力耦合分析,得到摩擦过程中温度场、应力场分布变化规律及相关原因,分析润滑剂和基体的温度、应力、应变的变化趋势,探讨不同影响因素(加热温度、摩擦热、孔变形挤压力)对润滑剂驱动力的影响。仿真结果表明:加热温度对驱动力具有增益效果,持续加热后需考虑摩擦热的影响;相对加热温度,摩擦热对润滑剂的驱动力具有显著的促进作用,而孔变形产生的挤压应力影响较小;润滑剂在加热温度、摩擦热-应力及变形挤压的共同作用下析出到摩擦界面。基于润滑体与基体材料的匹配性和互溶性,通过润湿试验,结合经验公式分析,对固体润滑剂进行了组分设计,其最佳配比为:Pb65Sn35+12~18%Ag+0.2~0.3%RE(Y2O3);采用高频电磁感应熔浸工艺实现了基体与润滑剂的熔渗复合,制备出了熔渗型M3/2/TiC系高温自润滑复合材料。在销盘式高温摩擦磨损试验机上考察了其摩擦磨损性能,利用扫描电子显微镜(SEM)、光电子能谱(EDXA)和X射线衍射仪(XRD)分析磨损表面成分、形貌和结构。结果表明:熔渗型高温自润滑复合材料在高温摩擦磨损过程中,润滑剂通过微孔通道析出至摩擦表面形成了一层含有Pb、Sn、Ag、RE等元素的固体润滑膜;在Pb65Sn35-12Ag润滑剂基础上添加0.25%RE,润滑性能相对提高;基于SEM表面形貌分析,探讨了高温自补偿润滑复合材料的成膜机理。
[Abstract]:Microporous high temperature self-compensation lubricating composite is a new type of self-lubricating composite material, which is prepared by melting melt composite solid lubricant into microporous matrix under vacuum pressure. At high temperature, the solid lubricant stored in the pore of the lubricant can form a lubricating film at the friction interface due to the effect of friction heat and stress, so that the self-lubricating function can be realized. Its tribological properties depend on the amount of precipitation and composition of the composite solid lubricant. Therefore, it is of great significance to establish a thermal-mechanical coupling drive model and study the precipitation mechanism and film formation mechanism of solid lubricant for the design and preparation of microporous high-temperature self-compensation lubricating composites. Based on the theory of spherical filling in porous media and the characteristics of micropore structure of high temperature self-compensating lubricating materials, the cell body structure model is established, and the temperature field and stress field of the cell body model are calculated according to the thermo-mechanical coupling problem in the friction process. According to the driving force of lubricant precipitation, the thermoelastic theory is used to establish the thermo-mechanical coupling driving model, and the influence factors such as ambient temperature, friction heat and friction force are analyzed. The transient thermal analysis and thermo-mechanical coupling analysis of infiltrated high-temperature self-compensation lubricating materials were completed by ANSYS Workbench. The temperature field, stress field distribution and related reasons were obtained during friction process. The temperature and stress of lubricant and matrix were analyzed, and the temperature and stress of lubricant and matrix were analyzed. The influence of different factors (heating temperature, friction heat, hole deformation extrusion pressure) on the driving force of lubricant is discussed. The simulation results show that the heating temperature has gain effect on the driving force, the effect of friction heat should be taken into account after continuous heating, and the friction heat has a significant promoting effect on the driving force of lubricant compared with the heating temperature. However, the effect of pore deformation on extrusion stress is relatively small, and lubricant precipitates to the friction interface under the combined action of heating temperature, frictional thermal-stress and deformation extrusion. Based on the matching and mutual solubility of lubricant and matrix material, the composition design of solid lubricant was carried out by wetting test and empirical formula analysis. The optimum ratio is: 1 / Pb65Sn35 12~18%Ag 0.2~0.3%RE (Y2O3), and the infiltrating composite of matrix and lubricant is realized by high frequency electromagnetic induction infiltration process, and the infiltrated M3/2/TiC system high temperature self-lubricating composite is prepared. The friction and wear properties were investigated on a pin disk high temperature friction and wear tester. The wear surface composition, morphology and structure were analyzed by scanning electron microscope (SEM),) photoelectron spectroscopy (EDXA) and X-ray diffractometer (XRD). The results show that during high temperature friction and wear of the infiltrated high temperature self-lubricating composite, the lubricant precipitates to the friction surface through the micropore channel to form a layer of solid lubricating film containing Pb,Sn,Ag,RE and other elements. On the basis of Pb65Sn35-12Ag lubricant, the lubricating property is improved by adding 0.25 RE.The film forming mechanism of high temperature self-compensation lubricating composite is discussed based on SEM surface morphology analysis.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB33

【参考文献】

相关期刊论文 前10条

1 王鹏;李文斌;;高速磨削电主轴热-结构耦合有限元分析与仿真[J];机械设计与制造;2016年12期

2 陈百明;张俊喜;郭小汝;龚成功;曹德瑾;张振宇;;高温金属基减摩材料的固体润滑剂的研究进展[J];矿山机械;2016年01期

3 陈新忠;张丽萍;;温度场对注气驱替煤层气运移影响的数值分析[J];采矿与安全工程学报;2014年05期

4 韩建伟;鲁后国;李华伟;;摩擦生热的仿真分析[J];汽车工程师;2014年01期

5 郭志成;李长生;唐华;阎逢元;孙建荣;刘金银子;;Fe-Ni基高温自润滑复合材料摩擦磨损特性研究[J];摩擦学学报;2013年03期

6 朱圣宇;王立峰;陈江涛;田雨;毕秦岭;;宽温域连续润滑的Ni_3Al基自润滑复合材料[J];宇航材料工艺;2013年01期

7 王常川;王日初;彭超群;冯艳;韦小凤;;金属基固体自润滑复合材料的研究进展[J];中国有色金属学报;2012年07期

8 王砚军;刘佐民;王守仁;;浸渗型高温自润滑金属陶瓷复合材料的制备及其性能[J];机械工程材料;2010年07期

9 曹同坤;高伟;;Al_2O_3/TiC/CaF_2陶瓷的摩擦磨损及自润滑膜的形成机理研究[J];材料工程;2009年09期

10 李燕;卢平;刘佐民;;颗粒增强复合材料热膨胀系数预测模型的研究[J];武汉理工大学学报;2009年17期

相关博士学位论文 前5条

1 时来鑫;Mg-Al合金熔体在三种常用增强体陶瓷基板上的润湿[D];吉林大学;2013年

2 燕松山;高温发汗润滑层制备及其功能控制机理研究[D];武汉理工大学;2011年

3 王砚军;高温发汗自润滑金属陶瓷的制备、表征及摩擦学特性研究[D];武汉理工大学;2008年

4 杨丽颖;高温自润滑TiAl基合金的制备及其性能研究[D];武汉理工大学;2008年

5 张一兵;高温发汗润滑的热驱动机理及其稳定性研究[D];武汉理工大学;2008年

相关硕士学位论文 前2条

1 张杰;激光熔覆二硫化钼/氟化物复相自润滑涂层及摩擦磨损学特性[D];上海工程技术大学;2015年

2 王莽;镍铝基自润滑复合材料的摩擦学性能研究[D];武汉理工大学;2013年



本文编号:2256395

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2256395.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9a360***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com