分数阶粘弹性模型参数识别及其有限元实现
发布时间:2020-11-09 09:08
生物软/硬组织、高填充复合材料、聚合物等均表现出一定程度的粘弹性。该特性不仅显著影响材料本身及由其制造结构的极端弹性响应,且决定着它们在实际应用中损伤演变、失效机理和使用寿命。因此,建立材料粘弹性模型参数的准确识别方法和数值模拟程序对实际应用具有重要意义。目前,材料的粘弹性特性多采用Prony级数模型描述,但存在以下限制:(1)难以通过一次测试同时获得材料的蠕变柔量和松弛模量;(2)采用纳米压痕方法测试小尺寸试样时,难以获得球形压头的拟合函数。为此,本文将分数阶模型拓展应用于纳米压痕测试粘弹性数据的拟合,并建立相应的有限元模拟方法。首先,根据压痕实验需要测定的目标参数和实验所用压头形状,将拟合问题分为四种情况。然后,结合分数阶Zener模型推导获得拟合方程,并建立目标模量函数参数的详细拟合方案。针对划分的四种情况,选取相应实例,采用推导的拟合方程和最小二乘法拟合实验数据,与已有文献的结果比较验证建立方法的有效性。结果表明:本文的拟合方程可准确的描述不同目标参数、不同压头形状测试的实验数据。相较于Prony级数模型,本文模型具有以下优势:1.拟合方程待定参数更少;2.粘弹性模量函数间可实现精确变换,通过一次实验可同时获得材料的松弛模量和蠕变柔量。此外,本文还建立了静态/准静态载荷作用下,采用分数阶模型描述的材料粘弹性响应有限元求解方法,并采用C++编制了相应的模拟程序。通过求解两个典型简化实例的粘弹性响应,并与ANSYS及解析解对比,验证了模拟方法和有限元程序的正确性。最后,采用验证有限元模拟程序求解了复合材料层合板的粘弹性响应,深入分析了粘接层粘弹性对层合板整体形变和层间应力的影响。
【学位单位】:西南交通大学
【学位级别】:硕士
【学位年份】:2018
【中图分类】:TB303
【文章目录】:
摘要
abstract
第1章 绪论
1.1 引言
1.2 研究发展和现状
1.2.1 粘弹性模型的研究和发展现状
1.2.2 粘弹性材料模型参数识别的研究和发展现状
1.2.3 粘弹性材料有限元方法研究现状
1.3 本文研究内容
第2章 分数阶粘弹性本构模型
2.1 引言
2.2 粘弹性本构模型定义
2.2.1 微分型本构模型的引入
2.2.2 积分型本构模型和蠕变模量函数与松弛模量函数引入
2.3 分数阶粘弹性模型的引入
2.3.1 分数阶微积分基础知识
2.3.2 将Riemann-Liouville型分数阶微分引入粘弹性微分本构模型中
2.4 本章小结
第3章 分数阶粘弹性模型的参数识别
3.1 引言
3.2 压痕法实验方法和数据处理原理
3.2.1 测定蠕变柔量函数J(t)的控制方程
3.2.2 测定松弛模量函数Y(t)的控制方程
3.3 实例验证
3.3.1 测定蠕变柔量函数J(t)
3.3.2 测定松弛模量函数Y(t)
3.4 粘弹性模型材料函数互变换
3.5 本章小结
第4章 分数阶粘弹性模型有限元实现
4.1 引言
4.2 粘弹性固体力学基本方程
4.2.1 静力、几何和物理基本方程
4.2.2 分数阶本构模型的离散
4.3 粘弹性固体力学问题的有限元实现
4.4 本章小结
第5章 分数阶粘弹性有限元程序验证及应用
5.1 引言
5.2 粘弹性体受力载荷
5.2.1 本文有限元模拟程序求解
5.2.2 有限元软件Ansys求解
5.2.3 结果对比
5.3 粘弹性体受位移载荷
5.3.1 粘弹性响应的理论值求解
5.3.2 本文有限元模拟程序求解及结果对比
5.4 应用实例
5.4.1 考虑粘接剂的粘弹性特性
5.4.2 考虑粘接剂模量函数变化对粘接界面应力的影响
5.5 本章小结
结论与展望
致谢
参考文献
攻读硕士学位期间发表的论文及参加的科研项目
【参考文献】
本文编号:2876192
【学位单位】:西南交通大学
【学位级别】:硕士
【学位年份】:2018
【中图分类】:TB303
【文章目录】:
摘要
abstract
第1章 绪论
1.1 引言
1.2 研究发展和现状
1.2.1 粘弹性模型的研究和发展现状
1.2.2 粘弹性材料模型参数识别的研究和发展现状
1.2.3 粘弹性材料有限元方法研究现状
1.3 本文研究内容
第2章 分数阶粘弹性本构模型
2.1 引言
2.2 粘弹性本构模型定义
2.2.1 微分型本构模型的引入
2.2.2 积分型本构模型和蠕变模量函数与松弛模量函数引入
2.3 分数阶粘弹性模型的引入
2.3.1 分数阶微积分基础知识
2.3.2 将Riemann-Liouville型分数阶微分引入粘弹性微分本构模型中
2.4 本章小结
第3章 分数阶粘弹性模型的参数识别
3.1 引言
3.2 压痕法实验方法和数据处理原理
3.2.1 测定蠕变柔量函数J(t)的控制方程
3.2.2 测定松弛模量函数Y(t)的控制方程
3.3 实例验证
3.3.1 测定蠕变柔量函数J(t)
3.3.2 测定松弛模量函数Y(t)
3.4 粘弹性模型材料函数互变换
3.5 本章小结
第4章 分数阶粘弹性模型有限元实现
4.1 引言
4.2 粘弹性固体力学基本方程
4.2.1 静力、几何和物理基本方程
4.2.2 分数阶本构模型的离散
4.3 粘弹性固体力学问题的有限元实现
4.4 本章小结
第5章 分数阶粘弹性有限元程序验证及应用
5.1 引言
5.2 粘弹性体受力载荷
5.2.1 本文有限元模拟程序求解
5.2.2 有限元软件Ansys求解
5.2.3 结果对比
5.3 粘弹性体受位移载荷
5.3.1 粘弹性响应的理论值求解
5.3.2 本文有限元模拟程序求解及结果对比
5.4 应用实例
5.4.1 考虑粘接剂的粘弹性特性
5.4.2 考虑粘接剂模量函数变化对粘接界面应力的影响
5.5 本章小结
结论与展望
致谢
参考文献
攻读硕士学位期间发表的论文及参加的科研项目
【参考文献】
相关期刊论文 前10条
1 王利军;南静娅;陈家宝;许玉芝;王春鹏;储富祥;;双组分豆粕胶粘剂的固化粘弹性能研究[J];粘接;2017年04期
2 杨军辉;蒙上阳;雷勇军;;黏弹性界面断裂分析的增量“加料”有限元法[J];力学学报;2015年03期
3 寇磊;白云;;分数阶微分双参数黏弹性地基矩形板动力响应[J];振动与冲击;2014年08期
4 邓斌;申志彬;谢燕;唐国金;;含损伤粘弹性本构及其在有限元分析中的实现[J];推进技术;2013年05期
5 银花;陈宁;;分数阶导数粘弹性模型的有限元法[J];计算力学学报;2012年06期
6 罗民;孟广伟;马洪顺;;骨质疏松动物模型治疗的黏弹性实验研究[J];北京生物医学工程;2007年04期
7 刘甲国,徐明瑜;人颅骨粘弹性的分数阶模型研究[J];中国生物医学工程学报;2005年01期
8 贺家宁,张忠君,马洪顺;玻璃离子水门汀弹性系数与粘弹性实验研究[J];中国生物医学工程学报;2003年06期
9 钱国平,郭忠印,郑健龙,周志刚;环境条件下沥青路面热粘弹性温度应力计算[J];同济大学学报(自然科学版);2003年02期
10 周定沛;胶层的粘弹性与固化工艺[J];粘接;1997年03期
相关博士学位论文 前1条
1 罗民;药物治疗骨质疏松动物模型的生物力学实验研究[D];吉林大学;2009年
本文编号:2876192
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2876192.html