基于小波分析的造船用龙门吊损伤识别研究
本文关键词: 损伤识别 龙门吊 小波变换 时-频分析 长标距应变传感 位移模态 出处:《东南大学》2015年硕士论文 论文类型:学位论文
【摘要】:随着中国港口和造船业的迅速发展,造船用龙门吊数量日益增加。高荷载量和恶劣环境致使龙门吊在寿命周期内产生的积累损伤成为诱发其安全事故的重要因素。龙门吊结构体系庞大、工作荷载高,其安全事故将对人身安全和经济发展产生严重的危害。结构损伤识别技术可以准确地识别结构的损伤信息,为结构的及时修复与加固提供有利条件,从而保证其安全性。鉴于此,论文以造船用龙门吊主体结构损伤为研究对象,基于小波分析,通过理论分析、数值模拟和模型试验对小波损伤识别方法进行了以下研究:(1)对比现有结构损伤识别方法,分析了小波方法在识别结构损伤中的优点,揭示了小波函数特性对结构损伤信息提取的影响,明确了选择小波函数的基本原则。(2)采用基于小波变换提取结构模态奇异点的方法识别结构损伤。基于有限元方法分别对具有单点和多点损伤的梁、单层构架和缩尺龙门吊结构进行动力分析,根据其位移与加速度信号提取结构模态信息,并且利用小波变换识别了结构损伤导致的模态信息中的奇异点。(3)分析了长标距应变信号对损伤的敏感性,提出了基于修正小波包能量分析的损伤识别方法。采用有限元方法模拟了不同结构的应变时程数据,根据提取的损伤指标进行了损伤识别。结果表明,修正小波包能量变化率可以准确的识别损伤的位置,较为准确的识别结构的损伤程度,且对信号中的噪声具有较好的鲁棒性。(4)通过简支钢梁的试验分析,得出了较为准确的损伤程度信息,证明了修正小波包能量变化率作为结构损伤指标的可行性。总之,论文通过理论分析、数值模拟和模型试验对提出的小波损伤识别方法进行了研究,提出了基于长标距应变传感和系统模态识别的龙门吊主体结构损伤的识别方法,通过简支钢梁的试验分析验证了该方法的可靠性与精确性,研究结果为龙门吊损伤识别提供了新的思路和方法,也为龙门吊结构健康监测系统的搭建提供了新的支持。
[Abstract]:With the rapid development of China's port and shipbuilding industry, The number of gantry cranes for shipbuilding is increasing day by day. The accumulative damage caused by high load and bad environment becomes an important factor to induce safety accidents of gantry cranes. The structure system of gantry cranes is large and the working load is high. The structural damage identification technology can accurately identify the damage information of the structure and provide favorable conditions for the timely repair and reinforcement of the structure. So as to ensure its safety. In view of this, the main structure damage of shipbuilding gantry crane is taken as the research object, based on wavelet analysis, through theoretical analysis, Numerical simulation and model test are used to study the wavelet damage identification method. (1) comparing with the existing structural damage identification methods, the advantages of wavelet method in structural damage identification are analyzed. The influence of wavelet function characteristics on structure damage information extraction is revealed. The basic principle of selecting wavelet function is defined. (2) the method of extracting structural modal singularity points based on wavelet transform is used to identify structural damage. Dynamic analysis of single-layer frame and telescopic gantry crane structure is carried out, and modal information of the structure is extracted according to its displacement and acceleration signals. Using wavelet transform to identify the singularity point in the modal information caused by structural damage, the sensitivity of the long distance strain signal to the damage is analyzed. The damage identification method based on modified wavelet packet energy analysis is proposed. The strain time history data of different structures are simulated by finite element method, and the damage identification is carried out according to the damage index extracted. The results show that, The modified wavelet packet energy change rate can accurately identify the damage location and the damage degree of the structure, and has good robustness to the noise in the signal. More accurate damage degree information is obtained, and the feasibility of using modified wavelet packet energy change rate as structural damage index is proved. The method of wavelet damage identification is studied by numerical simulation and model test. The damage identification method of the main structure of gantry crane based on long distance strain sensing and system modal identification is proposed. The reliability and accuracy of the method are verified by the test analysis of simply supported steel beam. The results provide a new idea and method for the damage identification of gantry crane and a new support for the construction of health monitoring system of gantry crane structure.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U673.38
【相似文献】
相关期刊论文 前10条
1 冉启文,冯英浚,孙学全;Construction theory of dyadic scale function and dyadic wavelet function[J];Journal of Harbin Institute of Technology;2000年04期
2 黄忠亿;Wavelet-Galerkin Method for the Singular Perturbation Problem with Boundary Layers[J];Tsinghua Science and Technology;2000年04期
3 ;Wavelet Filter and Noise Rejection for the Pulse Laser Radar[J];Chinese Journal of Lasers;2000年04期
4 牛夏牧,孙圣和;Wavelet-based gray-level digital image watermarking[J];Journal of Harbin Institute of Technology;2001年02期
5 ;A STUDY OF VELOCITY FIELD IN SHIP WAVES[J];Journal of Hydrodynamics(Ser.B);2001年04期
6 ;Application of Wavelet Finite Element Method to Simulation of the Temperature Field of Copier Paper[J];International Journal of Plant Engineering and Management;2002年04期
7 ;Fault Diagnosis of a Turbo-unit Based on Wavelet Packet Theory[J];International Journal of Plant Engineering and Management;2002年04期
8 王立欣,诸定秋,蔡惟铮;Adaptive de-noising method based on wavelet and adaptive learning algorithm in on-line PD monitoring[J];Journal of Harbin Institute of Technology;2002年04期
9 胡海平 ,莫玉龙;Performance Evaluation of Wavelet Based on Human Visual System[J];Journal of Shanghai University;2002年03期
10 陈维荣 ,宋永华 ,赵蔚;Power System Transients Analysis by Wavelet Transforms[J];Journal of Southwest Jiaotong University;2002年01期
相关会议论文 前10条
1 ;Research on wavelet neural network for fault location in power distribution network[A];2009年中国智能自动化会议论文集(第一分册)[C];2009年
2 ;Investigation on the motion fault of main spindle using the wavelet neural network[A];2007'仪表,,自动化及先进集成技术大会论文集(一)[C];2007年
3 ;Practical Application of Fuzzy Technology for Experiment Data Analysis of Rotating Machine[A];2009中国控制与决策会议论文集(1)[C];2009年
4 ;An improved fault detection algorithm based on wavelet analysis and kernel principal component analysis[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
5 ;Study the radial motion error of main spindle of the lathe based on the neural network of harmonic wavelet[A];首届全国航空航天领域中的力学问题学术研讨会论文集(下册)[C];2004年
6 ;Characteristics of orthogonal vector-valued wavelet packet bases[A];2009中国控制与决策会议论文集(3)[C];2009年
7 ;A Novel Track-to-Track Association Algorithm Based on DWT[A];2009中国控制与决策会议论文集(3)[C];2009年
8 ;Research on Feature Extraction Algorithms in BCI[A];2009中国控制与决策会议论文集(3)[C];2009年
9 ;The Research of orthogonal vector-valued wavelet packets[A];2009中国控制与决策会议论文集(1)[C];2009年
10 ;An Effective SALS Image Denoising Method based on 2-D Discrete Wavelet Decomposition[A];Information Technology and Computer Science—Proceedings of 2012 National Conference on Information Technology and Computer Science[C];2012年
相关博士学位论文 前2条
1 Firas Al Omari;[D];江苏大学;2014年
2 Eidam Ahmed Hebiel Ahmed;[D];华中农业大学;2013年
相关硕士学位论文 前2条
1 王海峰;基于小波分析的造船用龙门吊损伤识别研究[D];东南大学;2015年
2 戎海栋;基于小波方法的紧急事件预测[D];天津大学;2005年
本文编号:1512854
本文链接:https://www.wllwen.com/kejilunwen/chuanbolw/1512854.html