基于拉格朗日松弛法的停电系统机组恢复顺序优化方法研究
发布时间:2018-01-06 01:20
本文关键词:基于拉格朗日松弛法的停电系统机组恢复顺序优化方法研究 出处:《南京理工大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 停电系统 机组恢复顺序 拉格朗日松弛法 次梯度 自适应次梯度
【摘要】:电网大停电事故后的机组恢复问题是一个非线性组合优化问题。合理的机组恢复顺序能加快整个系统的恢复速度,减少停电损失。随着电网互联规模的扩大,系统安全运行面临考验,易发生大面积停电事故,提高大规模机组恢复控制策略的计算速度成了研究人员关注的重要问题。目前,机组恢复顺序的优化大多以运行经验和专家系统为基础。启发式算法,智能算法等方法也相继应用到机组恢复顺序问题之中。专家系统知识库的建立与维护工作量大,且具有局限性,难以全面获取系统信息。启发式算法和智能算法虽然能在一定程度上加快计算速度,但是对于大规模机组的计算时间仍然较长。因此,需要进一步研究提高机组恢复顺序问题计算速度的算法。本文提出了基于拉格朗日松弛法的停电系统机组恢复顺序优化的方法,主要完成了以下工作:1.针对当前停电系统机组恢复顺序数学模型复杂,形式多样的问题,从原理上分析了机组恢复的过程,并在此基础上简化了目标函数和约束条件,从而建立了停电系统机组恢复顺序的数学模型。数学模型以机组的状态变量作为目标函数和约束条件的决策变量,不再具体区分黑启动机组与非黑启动机组,形式上得到统一,方便算法的求解。2.针对传统算法计算速度上的不足,提出了将拉格朗日松弛法应用于求解大规模停电系统机组恢复顺序的优化方法,分析了拉格朗日松弛法的数学原理,在求解对偶问题的过程中,结合可分整数规划问题从原理上对计算速度的提高给出了合理的解释。3.针对拉格朗日松弛法收敛速度慢的问题,一方面给出了拉格朗日乘子初值的选取方法,另一方面在优化过程中采用次梯度法和自适应次梯度法相结合的方法迭代拉格朗日乘子,加快了算法的收敛速度,进一步减少了计算时间。4.通过对实际的新英格兰系统,广东电网部分分区系统,江苏电网部分分区系统进行计算分析,验证了算法的有效性。
[Abstract]:Blackout after the crew recovery problem is a nonlinear optimization problem. The reasonable order of unit restoration can accelerate the recovery speed of the system, reduce the power loss. With the expansion of network interconnection, the safe operation of the system under test, prone to large area power outages, improve the calculation speed of recovery has become an important control strategy concerns of researchers of large scale unit. At present, optimization of plant restoration sequence is mostly based on the operation experience and expert system based heuristic algorithm, intelligent algorithms and other methods have been applied to the unit in recovery order. The expert system knowledge base establishment and maintenance, and has limitations, it is difficult to fully get system information. The heuristic algorithm and intelligent algorithm can accelerate the speed of computation to a certain extent, but the calculation time for large units still Long. Therefore, the need for further research to improve the calculation speed of the order of unit restoration algorithm. This paper presents a method of sequential optimization power system restoration unit based on Lagrange relaxation method, mainly completed the following work: 1. in view of the current power system unit restoration sequence of complex mathematical models, a variety of problems, from the analysis on the principle of process the unit of recovery, and on the basis of simplifying the objective function and constraints, so as to establish the mathematical model of unit power system restoration sequence. The decision variable mathematical model based on the state variable set as the objective function and constraint conditions, no specific distinction between black start units and black start units, forms are unified, for.2. convenient algorithm for the traditional algorithm the calculation speed of the proposed Lagrange relaxation method is applied to solve the large-scale power cut system The order of unit restoration optimization method, analyzes the mathematical principle of Lagrange relaxation method, to solve the dual problem, combined with the separable integer programming problem from the principle of the speed of calculation gives a reasonable explanation for the.3. Lagrange relaxation method for the problem of slow convergence, a method is given to select the Lagrange multiplier value the Lagrange iteration method, on the other hand by the subgradient method and adaptive subgradient method in the optimization process of the combination of the multiplier, to speed up the algorithm convergence and reduce the computational time of.4. on the actual new England system, part division system of Guangdong power grid, analyzed the Jiangsu grid partition system, verification the effectiveness of the algorithm.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM732
【相似文献】
相关期刊论文 前4条
1 赖菲;王智微;杨东;黄廷辉;胡洪华;;利用拉格朗日松弛法解决SIS中的负荷经济分配问题[J];热力发电;2007年06期
2 赵庆波,孙岚,郭燕,高峰;基于拉格朗日松弛法的优化调度系统[J];电力系统自动化;2004年18期
3 毛学志;;水电厂厂内经济运行方法研究[J];科技信息;2013年36期
4 ;[J];;年期
相关硕士学位论文 前2条
1 张成;基于拉格朗日松弛法的停电系统机组恢复顺序优化方法研究[D];南京理工大学;2017年
2 陶继平;基于拉格朗日松弛法的调度算法研究[D];上海交通大学;2014年
,本文编号:1385694
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1385694.html