当前位置:主页 > 科技论文 > 电气论文 >

基于石墨烯柔性超级电容器电极材料及器件研究

发布时间:2018-01-15 13:38

  本文关键词:基于石墨烯柔性超级电容器电极材料及器件研究 出处:《电子科技大学》2016年硕士论文 论文类型:学位论文


  更多相关文章: 石墨烯薄膜 复合材料 储能材料 器件结构 柔性超级电容器


【摘要】:近年来,随着可穿戴电子产品的不断发展,作为其重要功能组件的柔性储能器件受到了国内外研究者的强烈关注和广泛研究。柔性超级电容器因其工作原理简单、储能效率高、循环寿命长、成本低、环境友好以及良好的可植入性等优点,有望在下一代可穿戴电子产品中得到广泛应用。可穿戴电子产品特殊的应用环境要求储能元件须具备安全性高、便携性好以及储能量大的特点。而柔性超级电容器的储能性能和实用性受电极材料、电解质、器件结构以及其他因素的影响。本论文从制备比电容高的石墨烯及其复合材料出发,探究其作为柔性超级电容器电极材料的性能,成功地制备了高性能的柔性超级电容器,并初步考察了将其应用于可穿戴电子设备的可行性。同时,系统地研究了电极材料、电解质、器件结构对柔性超级电容器性能的影响。本论文的研究内容主要包括以下三个部分:(1)采用一种新型石墨烯薄膜制备方法,将氧化石墨烯的还原和石墨烯的成膜过程同步完成,可在低温、短时间内制备出高导电性(约为17Ωsq~(-1))的大面积石墨烯薄膜,并以该石墨烯薄膜为电极材料制备了高性能的柔性薄膜超级电容器(比电容可达152.4 m F cm~(-2))。同时还研究了薄膜电极厚度、器件面积等参数对器件储能性能的影响。另外,对固态柔性超级电容器也进行了系统的探索。(2)通过浸染和高温处理两个过程将石墨烯与棉纤维复合,制备了质量轻、导电性好(约为900Ωsq~(-1))、电化学活性高的复合薄膜材料,并以其为电极材料制备了高性能的三明治—叉指结构柔性超级电容器(比电容可达5.53 F cm~(-3))。此外,还提出一种可有效提升超级电容器储能效率的三明治—叉指型器件结构,并系统地研究了器件结构对超级电容器储能性能的影响。(3)以线型棉纤维为骨架,经过一步水热法将其与石墨烯水凝胶/CNTs原位复合,制备了高机械性能的线型柔性电极。再结合聚合物电解质,制备了高性能的线型固态柔性超级电容器(比电容可达97.73μF cm~(-1),上万次的循环寿命),并初步探究了将其应用于可穿戴电子设备的可行性。
[Abstract]:In recent years, with the continuous development of wearable electronic products. Flexible energy storage devices, which are important functional components of flexible supercapacitors, have been paid close attention to and widely studied by researchers at home and abroad. Flexible supercapacitors have the advantages of simple working principle, high energy storage efficiency, long cycle life and low cost. It is expected to be widely used in the next generation wearable electronic products due to its environmental friendliness and good implantability. The special application environment of wearable electronic products requires high safety of energy storage components. Good portability and large energy storage. The energy storage performance and practicability of flexible supercapacitors are determined by electrode materials, electrolytes. Based on the preparation of graphene with high capacitance and its composite materials, the properties of graphene as electrode materials for flexible supercapacitors were investigated. The high performance flexible supercapacitors were successfully prepared, and the feasibility of their application in wearable electronic devices was preliminarily investigated. At the same time, electrode materials and electrolytes were systematically studied. The effect of device structure on the performance of flexible supercapacitors. The main contents of this thesis include the following three parts: 1) A novel graphene thin film preparation method is used. The reduction of graphene oxide and the film forming process of graphene oxide were simultaneously completed, and a large area graphene thin film with high electrical conductivity (about 17 惟 sql-1) could be prepared at low temperature and in a short time. A high performance flexible thin film supercapacitor with a specific capacitance of up to 152.4 MF / cm ~ (-2) was prepared using the graphene film as the electrode material. The thickness of the thin film electrode was also studied. The influence of device area and other parameters on the energy storage performance of the device. In addition, the solid state flexible supercapacitors were also systematically explored. 2) graphene and cotton fiber were combined by soaking and high temperature treatment. The composite thin films with light weight, good electrical conductivity (about 900 惟 sql-1) and high electrochemical activity were prepared. A high performance sandwich / cross finger structure flexible supercapacitor with a specific capacitance of 5.53 F cm ~ (-1) ~ (3) was prepared by using it as an electrode material. A sandwich-cross-finger device structure which can effectively improve the energy storage efficiency of supercapacitors is proposed. The effect of device structure on the energy storage performance of supercapacitors is studied systematically. 3) the linear cotton fiber is used as the skeleton. The linear flexible electrode with high mechanical properties was prepared by one step hydrothermal method and in situ composite with graphene hydrogel / CNTs. Then the polymer electrolyte was bonded. A high performance linear solid state flexible supercapacitor with a specific capacitance of 97.73 渭 F / cm ~ (-1) and a cycle life of ten thousand times was prepared. The feasibility of applying it to wearable electronic devices is discussed.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM53

【参考文献】

相关期刊论文 前8条

1 杨勇辉;孙红娟;彭同江;黄桥;;石墨烯薄膜的制备和结构表征[J];物理化学学报;2011年03期

2 涂亮亮;贾春阳;;导电聚合物超级电容器电极材料[J];化学进展;2010年08期

3 胡晓珍;高超;;石墨烯纤维研究进展[J];中国材料进展;2014年08期

4 卢忠花;王卿璞;鲁海瑞;袁帅;王丹丹;;柔性可穿戴电子的新进展[J];微纳电子技术;2014年11期

5 费晓强;张克军;崔雷涛;陈亮;;智能手机和可穿戴设备能量收集技术[J];电子元件与材料;2015年02期

6 康怡然;蔡锋;陈宏源;陈名海;张锐;李清文;;碳纳米管/石墨烯复合结构及其电化学电容行为[J];化学进展;2014年09期

7 刘春娜;;柔性电池研发进展[J];电源技术;2014年12期

8 陶泽荣;;可穿戴设备期待成为消费电子市场新增长点[J];世界电信;2015年09期



本文编号:1428600

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1428600.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f72d6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com