负荷综合模型与仿真适应性研究
本文关键词:负荷综合模型与仿真适应性研究 出处:《沈阳工程学院》2017年硕士论文 论文类型:学位论文
更多相关文章: 负荷综合模型 电动汽车 时序概率模型 蒙特卡洛模拟 仿真适应性评估
【摘要】:在能源短缺、环境污染严重、全球气候变暖的当今世界,电动汽车等新能源的出现,在缓解能源危机、促进人与环境和谐发展等方面具有不可替代的优势。电动汽车等新能源接入容量的不断增大,这不仅影响到了电网的结构,同时也使得潮流的流向发生了改变,进一步的使得配电网的运行特性和负荷特性也受到影响。此外,全行业负荷的发展之快致使传统的负荷结构模型不能满足当前所需的电力系统仿真计算。因此,针对分电动汽车等新能源大规模接入条件下的全行业发展负荷建模研究显得极为重要。本文分析了负荷建模的发展现状,对全行业负荷划分为四类典型的行业负荷,针对日益增长的电动车汽车充电负荷,基于蒙特卡洛模拟进行建模,选取稳定性指标进行适应性评估,并根据回归分析法做出预测,开展了负荷综合模型与仿真适应性研究。首先,通过多国内外研究现状的分析,发现现有的行业负荷结构值的单一统计方式已不能满足运行方式多变的系统仿真需求,存在着仿真结论片面、未考虑大规模电动汽车接入后的影响,以及仿真结论的准确性等方面的问题,提出本课题研究的重要性和紧迫性。其次,通过负荷结构模型的分析,确立本文所采用的建模方案:(1)将负荷进行业划分,分析各行业负荷的时序分布特性,依据抽样统计数据,分时段建立正态概率分布模型,最终以24时段形式构成分行业全时段负荷时序概率模型集;(2)采用蒙特卡洛法模拟算法,针对分行业全时段负荷时序概率模型集,模拟出每个行业负荷在24时段内的时序模型;(3)依据各行业负荷结构值,应用统计综合方法,蒙特卡洛模拟出全行业负荷结构时序模型;(4)建立新能源负荷电动汽车的负荷时序概率模型;(5)构建含电动汽车的全行业负荷综合模型。然后,对所建立的模型进行仿真适应性评估预测技术辨识。主要包括:(1)计及负荷综合模型的稳定性仿真分析;(2)针对不同负荷结构方式、负荷等效方式的仿真分析结论,提出基于雷达图理论的适应性评估指标;(3)面向稳定性仿真结论,展开回归分析,选取最优回归方程作为仿真适应性的预测模型。最后,以东北电网为实际应用场景,按照实际数据建立了含电动汽车的全行业负荷综合模型并进行了仿真适应性评估,仿真结果进一步论证了本文负荷综合模型的准确性和研究的可行性。
[Abstract]:In the energy shortage, serious environmental pollution in the world today, global warming, electric vehicles and other new energy sources, to alleviate the energy crisis, it has irreplaceable advantages to promote the harmonious development of people and the environment. The increasing of electric vehicles and other new energy access capacity, which not only affect the power grid structure, at the same time the trend also makes the flow of change, also affected further the operation characteristic and load characteristic of distribution network. In addition, the whole industry is the development of fast load load structure model which can not be satisfied with the traditional power system simulation and the needed computing. Therefore, the research of load modeling the whole industry development of new electric vehicles under the condition of large scale access energy is very important. This paper analyzes the current development of load modeling, load on the entire industry is divided into four types of typical industry load, for the day Electric vehicle charging load increasing, Monte Carlo simulation modeling based on adaptive selection stability index evaluation, and according to the regression analysis predicted and studied the integrated model and Simulation of adaptive load. Firstly, through the analysis present situation of the research at home and abroad, found that single statistical industry load structure of the existing value has not to meet the changing needs of the operation mode of system simulation, simulation results exist one-sided, without considering the impact of large-scale electric vehicle access, and the simulation results and other aspects of the problem, put forward the research significance and urgency. Secondly, through the analysis of load structure model, establish the modeling scheme used in this paper: (1) will load the industry division, analysis of temporal distribution characteristics of each industry load, based on the statistical data of sampling, time distribution of construction attention state probability The model, in the final 24 hours form industry full time load sequential probability model; (2) using the Monte Carlo simulation algorithm, according to industry full time load time series probability model set, simulated time series model of each industry load during the 24 period; (3) on the basis of the industry structure of load value, comprehensive method statistics, Monte Carlo simulation of load time series model structure of the entire industry; (4) establish the probability model of load load time series of new energy electric vehicles; (5) to construct a comprehensive model of the whole industry of electric vehicle. Then the load bearing, prediction and evaluation technology based on the adaptive identification simulation model. Mainly includes: (1) simulation analysis stability and comprehensive load model; (2) according to different load structure, the equivalent load method the simulation analysis, put forward the adaptability evaluation index of radar based on graph theory; (3) the stability of the imitation The true conclusion, expand regression analysis, selecting the optimal regression equation as the predictive model of simulation adaptability. Finally, the Northeast power grid for the practical application of the scene, according to the actual data to establish a comprehensive model of the whole industry load with EV and simulation adaptability evaluation, simulation results demonstrate the feasibility and accuracy of the load model research.
【学位授予单位】:沈阳工程学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM714
【参考文献】
相关期刊论文 前10条
1 刘刚;;基于气象修正技术的辽宁电网负荷预测应用研究[J];东北电力技术;2015年11期
2 刘坚;;中国2030年电动汽车电力系统储能应用研究(上)[J];中国能源;2015年10期
3 李轩;杨健;;提高电网输送能力工程中的负荷模型构造研究[J];陕西电力;2015年09期
4 罗浩成;胡泽春;张洪财;;环境温度对电动汽车充电负荷的影响分析[J];电力建设;2015年07期
5 刘明;;基于连云港市的电力系统短期负荷预测研究[J];东北电力技术;2015年02期
6 张永旺;赵伟;肖勇;林国营;陈晓爽;胡泽春;张洪财;徐智威;;基于分层架构的大规模电动汽车有序充电仿真平台[J];电网技术;2015年01期
7 陈丽丹;张尧;;电动汽车充电负荷预测系统研究[J];电力科学与技术学报;2014年01期
8 鞠平;刘伟航;项丽;余一平;丁茂生;陈谦;;电力系统负荷建模的自动故障拟合法[J];电力系统自动化;2013年10期
9 王锡凡;邵成成;王秀丽;杜超;;电动汽车充电负荷与调度控制策略综述[J];中国电机工程学报;2013年01期
10 郑竞宏;戴梦婷;张曼;王文倬;朱守真;;住宅区式电动汽车充电站负荷集聚特性及其建模[J];中国电机工程学报;2012年22期
,本文编号:1434778
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1434778.html