当前位置:主页 > 科技论文 > 电气论文 >

基于随机褶皱结构的柔性可拉伸聚合物太阳能电池研究

发布时间:2018-03-11 03:29

  本文选题:聚合物太阳能电池 切入点:柔性 出处:《吉林大学》2017年硕士论文 论文类型:学位论文


【摘要】:可穿戴电子器件由于具备广阔的应用前景,近几年来已经成为人们生活中常见的设备。随着人们对可穿戴电子器件的舒适度和方便性能的追求不断提高,可拉伸可穿戴电子器件吸引了人们大量的关注和研究。在所有的电子器件中能量供给系统是不可缺少的一个环节,那么,可拉伸有机聚合物太阳能电池作为可拉伸电子器件的供能系统展现出了很大的应用前途,例如为可穿戴电子器件,电子皮肤,可拉伸显示等提供能量。聚合物太阳能电池有高效率,重量轻,无污染和柔性衬底兼容性好等优点。从其结构出发,到目前为止具有弹性的聚合物吸收层还没有被成功地研制,所以本质可拉伸聚合物有机太阳能电池还没有被报道。目前的可拉伸太阳能电池都是基于随机褶皱辅助机制和弹簧状的。弹簧状的可拉伸聚合物太阳能电池由于制备工艺不成熟,光照射面积小等缺点的限制,很少被研究者们关注。褶皱辅助型可拉伸电池最为常见,其基本原理就是把其本身的柔性转换为可拉伸性。目前为止,报道的可拉伸聚合物太阳能电池的效率最高为4%,最大拉伸度为400%和循环拉伸次数为22次。为了进一步提高可拉伸太阳能电池的效率和拉伸度,我们制备了基于高效的吸收层材料PCDTBT:PC71BM的随机褶皱辅助型可拉伸聚合物太阳能电池。首先我们制备了超薄高光学透过率的柔性衬底,其厚度仅有11μm左右,在此衬底上制备的整个聚合物太阳能电池的厚度不超过11.4μm;随后把超薄器件粘贴在预拉伸的弹性体上,释放拉力后完成了可拉伸聚合物太阳能电池的制备。超薄器件增加了器件的柔性,这有利于我们的褶皱辅助可拉伸器件的最大拉伸度的提升。第二,我们用高透过的超薄金属柔性透明电极代替常用的PEDOT:PSS聚合物柔性电极,其在相同的透过率下,电导率相对于PEDOT:PSS柔性电极提高了一个数量级,从而提高了电池的短路电流。最终我们的器件在70%的最大拉伸度下,其效率为5.8%,这个效率是目前报道的可拉伸聚合物太阳能电池的最高效率。机械稳定性也是可拉伸聚合物太阳能电池的一个趋向实际应用的关键的性能指标。我们通过在超薄柔性聚合器件的底电极和弹性支撑体之间蒸镀一层疏松的小分子材料NPB作为牺牲层,来阻挡弹性体的粘性对器件底电极的破坏,从而我们的电池的循环拉伸的次数相对于之前报道的可拉伸聚合物太阳能电池提高了将近20倍。我们的器件的制备方法简单有效,为以后的可拉伸电子器件的发展提供了一种有效的途径。
[Abstract]:Wearable electronic devices have become a common device in people's lives in recent years due to their wide application prospects. With the increasing pursuit of wearable electronic devices' comfort and convenience performance, wearable electronic devices have become more and more popular. Tensile wearable electronic devices have attracted a lot of attention and research. Energy supply system is an indispensable part of all electronic devices, so, As an energy supply system for extensible electronic devices, extensible organic polymer solar cells have shown great application prospects, such as wearable electronic devices, electronic skin, Polymer solar cells have the advantages of high efficiency, light weight, pollution-free and flexible substrate compatibility. So essentially extensible polymer organic solar cells have not yet been reported. Current extensible solar cells are based on random fold assist mechanisms and spring-shaped. Spring-shaped extensible polymer solar cells. The preparation process is immature, The limitations of light exposure, such as the small area of light exposure, are rarely noticed by researchers. Folding assisted extensible batteries are most common, and the basic principle is to convert their own flexibility to extensibility. In order to further improve the efficiency and tensile strength of extensible polymer solar cells, the maximum efficiency, the maximum tensile degree and the number of cycles of stretching are 4, 400% and 22 cycles, respectively, reported in this paper. We have prepared a random fold assisted polymer solar cell based on high efficiency absorbent material PCDTBT:PC71BM. Firstly, we have prepared a flexible substrate with ultra-thin and high optical transmittance, the thickness of which is only about 11 渭 m. The thickness of the entire polymer solar cell prepared on this substrate does not exceed 11.4 渭 m; the ultra-thin device is then pasted onto the pre-tensile elastomer, After releasing the tensile force, the fabrication of the extensible polymer solar cell is completed. The ultra-thin device increases the flexibility of the device, which is conducive to the maximum tensile strength of our pleated auxiliary extensible device. Second, We replace the conventional PEDOT:PSS polymer flexible electrode with ultra-thin metal flexible transparent electrode with high transmittance. The conductivity of the flexible electrode is increased by an order of magnitude compared with that of the PEDOT:PSS flexible electrode at the same transmittance. This increases the short circuit current of the battery. Finally, our device reaches a maximum tensile strength of 70%. Its efficiency is 5.8, which is the highest efficiency of extensible polymer solar cells reported at present. Mechanical stability is also a key performance index of extensible polymer solar cells towards practical application. By vaporizing a loose small molecular material, NPB, between the bottom electrode and the elastic support of the ultra-thin flexible polymer device, as the sacrificial layer, To block the damage of the elastomer's stickiness to the bottom electrode of the device, so that the number of cycles of stretching our batteries is nearly 20 times higher than that of the previously reported extensible polymer solar cells. Our fabrication method is simple and effective. It provides an effective way for the development of extensible electronic devices in the future.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM914.4

【参考文献】

相关期刊论文 前4条

1 顾为东;;中国雾霾特殊形成机理研究[J];宏观经济研究;2014年06期

2 顾锦华;钟志有;何翔;孙奉娄;陈首部;;有机太阳能电池内部串并联电阻对器件光伏性能的影响[J];中南民族大学学报(自然科学版);2009年01期

3 陈明艳;姜显政;黄汝红;;浅析酸雨的形成、危害及防治措施[J];广东微量元素科学;2009年01期

4 戴君虎,晏磊;温室效应及全球变暖研究简介[J];世界环境;2001年04期

相关重要报纸文章 前1条

1 施芳;;可再生能源的家族[N];人民日报;2009年



本文编号:1596392

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1596392.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户95bd7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com