当前位置:主页 > 科技论文 > 电气论文 >

基于分布式优化的微电网群经济运行方法

发布时间:2018-03-14 08:16

  本文选题:微电网群 切入点:分布式优化 出处:《华北电力大学(北京)》2017年硕士论文 论文类型:学位论文


【摘要】:风机(Wind Turbine,WT)和光伏(Photovoltaic,PV)等分布式电源的不断发展,给电力系统的稳定运行带来越来越大的威胁。由多个微电网(Microgrid,MG)组成的微电网群,为风光等分布式能源的消纳提供了有利的环境。因而需要对微电网群的运行进行优化。根据微电网群是否联网,将微电网群分为并网型和离网型两种分别进行研究。对于并网型微电网群,在分布式电源上网电价低于市电电价的环境下,在微电网群实现电能共享,可以获得比单独运行更好的效益。根据微电网群中运营商的不同作用,分为独立系统运营商(Independent System Operator,ISO)以及屋顶租赁两种运营模式。在ISO运营模式中,提出了一种基于分布式电能供需比(Supply and Demand Ratio,SDR)的内部电价模型。基于经济性和舒适度,提出了用户的效用成本模型。分析用户的需求响应(Demand Response,DR)行为,提出了基于非合作博弈的DR模型,并提出了分布式优化算法对该模型进行求解;在屋顶租赁模式中,提出了一种基于分布式电能需供比(Demand and Supply Ratio,DSR)的内部电价模型。分析了在该电价模型下用户DR行为,提出了基于非合作博弈的DR模型。最后,利用分布式求解算法对模型进行了求解。算例结果表明:并网型微电网群的分布式优化运行方法能有效提高微电网群各方收益,提升了电量共享水平,验证了方法的有效性。对于离网型微电网群,首先对MG优化调度的基本模型进行了说明;其次,介绍了各分布式电源的基本模型,建立面向实时优化调度的储能系统(Battery Energy Storage System,BESS)成本模型,然后,提出了一种基于交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)的微电网群分布式优化调度方法。最后,通过算例验证了算法的有效性。
[Abstract]:The continuous development of distributed generation, such as Wind Turbine (WT) and photovoltaic photovoltaic (PVV), has brought more and more threats to the stable operation of power system. Provides an enabling environment for the absorption of distributed energy sources, such as wind, and therefore requires optimization of the operation of the microgrid cluster, depending on whether the microgrid cluster is connected, The microgrid cluster is divided into grid-connected type and off-grid type. For grid-connected micro-grid cluster, the power sharing is realized in the micro-grid group under the condition that the electricity price of distributed generation is lower than that of electricity price. According to the different roles of operators in the microgrid cluster, they can be divided into two operating modes: independent System operator ISO and roof lease. In ISO operation mode, This paper presents an internal electricity price model based on distributed supply and Demand demand (SDR). Based on economy and comfort, the utility cost model of users is proposed, and the demand response behavior of users is analyzed. In this paper, a Dr model based on non-cooperative game is proposed, and a distributed optimization algorithm is proposed to solve the model. In this paper, an internal pricing model based on distributed demand and Supply Ratio DSRs is proposed. The user's Dr behavior under the model is analyzed, and a Dr model based on non-cooperative game is proposed. The distributed solution algorithm is used to solve the model. The results show that the distributed optimal operation method of grid-connected microgrid cluster can effectively improve the income of all parties and improve the level of electricity sharing. The effectiveness of the method is verified. For the off-grid microgrid cluster, the basic model of MG optimal dispatching is first explained, and the basic models of distributed power generation are introduced. The cost model of Battery Energy Storage system for real-time optimal dispatching is established. Then, a distributed optimal dispatching method for microgrid group based on alternating direction multiplier method is proposed. The effectiveness of the algorithm is verified by an example.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM727

【参考文献】

相关期刊论文 前10条

1 徐意婷;艾芊;;基于全景理论的多微网聚合优化运行[J];电力系统保护与控制;2015年16期

2 李佩杰;陆镛;白晓清;韦化;;基于交替方向乘子法的动态经济调度分散式优化[J];中国电机工程学报;2015年10期

3 王杨;万凌云;胡博;谢开贵;向彬;;基于孤岛运行特性的微电网可靠性分析[J];电网技术;2014年09期

4 别朝红;胡国伟;谢海鹏;李更丰;;考虑需求响应的含风电电力系统的优化调度[J];电力系统自动化;2014年13期

5 周永智;吴浩;李怡宁;辛焕海;宋永华;;基于MCS-PSO算法的邻近海岛多微网动态调度[J];电力系统自动化;2014年09期

6 丁明;王伟胜;王秀丽;宋云亭;陈得治;孙鸣;;大规模光伏发电对电力系统影响综述[J];中国电机工程学报;2014年01期

7 江岳春;王志刚;杨春月;李锰;张俊鹏;;微网中可控负荷的多目标优化策略[J];电网技术;2013年10期

8 陈洁;杨秀;朱兰;张美霞;;基于遗传算法的热电联产型微网经济运行优化[J];电力系统保护与控制;2013年08期

9 陈炜;艾欣;吴涛;刘辉;;光伏并网发电系统对电网的影响研究综述[J];电力自动化设备;2013年02期

10 田培根;肖曦;丁若星;黄秀琼;;自治型微电网群多元复合储能系统容量配置方法[J];电力系统自动化;2013年01期



本文编号:1610364

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1610364.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8f049***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com