无轴承永磁同步电机无位置传感器状态估计及数字控制研究
发布时间:2018-03-27 12:37
本文选题:无轴承永磁同步电机(BPMSM) 切入点:滑模观测器(SMO) 出处:《江苏大学》2017年硕士论文
【摘要】:无轴承永磁同步电机(BPMSM)是将电磁轴承技术与永磁同步电机(PMSM)相结合的一种新型电机。该类型电机集旋转与自悬浮功能于一体,具有体积小、重量轻、功率密度大、无需润滑、无磨损、无机械噪声等特点,在半导体、生命科学、生物化工、航空航天等高科技领域具有广泛的应用前景。对无轴承电机稳定悬浮运行以及转子磁场定向控制而言,转子位置信号的精确检测是十分重要的。然而传统的机械式位置/速度传感器不仅增加了电机的体积和成本,而且降低了系统的可靠性,尤其是在高速、超高速条件下会严重限制无轴承电机优良高速性能的发挥。因此,本文在建立BPMSM数学模型基础上,对基于滑模观测器的BPMSM无位置传感器的状态估计方法展开研究,并完成了BPMSM数字控制系统的软、硬件设计实现。具体内容包括:(1)分析了BPMSM悬浮力产生原理以及转矩绕组与悬浮力绕组同气隙磁场之间的电磁耦合关系。利用麦克斯韦张量法构建了计及转子偏心的BPMSM悬浮力精确模型,根据机电能量转换原理推导出了考虑转子偏心与悬浮绕组电流的电磁转矩数学模型。(2)在传统滑模观测器的基础上,针对其抖振较大的问题,提出一种基于改进型滑模观测器的BPMSM转子位置估计方法。通过滑模观测器得到电机反电动势的估计值,利用PI-I结构的锁相环类型位置观测器从估计的反电动势中提取出转子位置和速度信息。采用转子磁场定向控制策略并考虑转子偏心,利用matlab/simulink建立了BPMSM无传感器控制系统仿真模型。仿真试验研究结果表明,所提出的改进方法能够在中高速条件下减小抖振并有效提高对转子位置的估计精度。(3)构建了基于DSP TMS320F28335的BPMSM数字控制实验平台,给出了完整的软、硬件实施方案。BPMSM数字控制系统的硬件设计方面主要包括:辅助电源电路、检测电路、接口电路。软件设计方面主要包括:转子位置和速度计算、径向位移闭环控制算法、速度和电流闭环控制算法、SVPWM调制算法。对BPMSM数字控制系统的软、硬件进行了调试,通过实验结果分析,证明了所提出设计方案的正确性。
[Abstract]:The bearingless permanent magnet synchronous motor (BPMSM) is a new type of motor which combines electromagnetic bearing technology with PMSM. This type of motor has the functions of rotation and self-suspension. It has the advantages of small volume, light weight, high power density and no lubrication. With no wear and no mechanical noise, it has a wide application prospect in the fields of semiconductor, life science, biochemistry, aerospace, etc., for the stable suspension operation of bearingless motor and the rotor magnetic field oriented control, The accurate detection of rotor position signal is very important. However, the traditional mechanical position / speed sensor not only increases the size and cost of the motor, but also reduces the reliability of the system, especially at high speed. The excellent high speed performance of bearingless motor will be seriously restricted under the condition of super high speed. Therefore, on the basis of establishing BPMSM mathematical model, the state estimation method of BPMSM sensorless position sensor based on sliding mode observer is studied in this paper. The software of BPMSM digital control system is completed. The hardware design is realized. The concrete contents include: 1) analyze the principle of BPMSM levitation force generation and the electromagnetic coupling relationship between torque winding and suspension force winding and air gap magnetic field. By using Maxwell Zhang Liang method, the rotor eccentricity is constructed. Precise BPMSM suspension force model, According to the principle of electromechanical energy conversion, a mathematical model of electromagnetic torque considering rotor eccentricity and suspension winding current is derived. Based on the traditional sliding mode observer, the problem of large buffeting is discussed. An improved sliding mode observer based BPMSM rotor position estimation method is proposed. The estimated value of the motor backEMF is obtained by the sliding mode observer. The rotor position and velocity information is extracted from the estimated backEMF by using the PI-I phase-locked loop type position observer. The rotor field oriented control strategy is adopted and the rotor eccentricity is considered. The simulation model of BPMSM sensorless control system is established by using matlab/simulink. The simulation results show that, The proposed improved method can reduce buffeting and improve the precision of rotor position estimation effectively under the condition of medium and high speed. The experimental platform of BPMSM digital control based on DSP TMS320F28335 is constructed, and the complete software is given. The hardware design of BPMSM digital control system mainly includes: auxiliary power circuit, detection circuit, interface circuit. Software design mainly includes: rotor position and velocity calculation, radial displacement closed-loop control algorithm, The software and hardware of BPMSM digital control system are debugged. The experimental results show that the proposed scheme is correct.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM341
【参考文献】
相关期刊论文 前10条
1 陈颖;祝苏明;顾迎月;朱q,
本文编号:1671556
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1671556.html