当前位置:主页 > 科技论文 > 电气论文 >

锂离子电池均衡技术仿真与设计

发布时间:2018-03-31 10:10

  本文选题:均衡 切入点:Simulink仿真 出处:《武汉纺织大学》2017年硕士论文


【摘要】:能源危机与环境恶化是中国新能源汽车发展的必然选择,已成为国家重点发展的新型战略产业。电池技术、电机控制、电池管理系统是新能源汽车的三大关键,电池技术是基础。电池管理系统对电池组的安全性能起制约要素,成为该领域的关键技术问题,研究意义重大。源于锂离子动力电池材料本身的特性、生产工艺导致的动力电池不一致性以及实际运行工况的复杂性,精确估算电池荷电状态,并实时动态对电池或电池组间能量进行无损调度,是解决新能源汽车动力电池安全问题最重要的途径,因此电池荷电状态估算和均衡技术成为电池管理系统的两大核心技术。针对特定应用开发高性能和高性价比的均衡电路以及优化均衡策略是锂离子电池均衡技术的重要研究问题。在研究过程中,结合项目组的需要和安排,开展了以下四个工作:(1)电池材料的制备和半电池的研制检测,以及动力电池性能充放电性能检测。开展了锂离子电池正极三元材料制备、安装和充放电性能检测,掌握了锂离子电池制备工艺;同时运用大电流充放电柜,对不同规格动力电池,如磷酸铁锂、锰酸锂、三元等电池进行充放电性能检测,并进行电池荷电状态估算;(2)开展了均衡电路仿真与均衡策略研究。针对新能源汽车面临的电池管理技术难题,通过查阅大量国内外文献资料和著作,在分析总结相关均衡技术的基础上,结合广泛使用的开关电源技术,对buck-boost变换器和双向反激式DC-DC结构的均衡电路进行了细致的仿真研究。研究表明基于buck-boost结构的均衡电路具有易模块化、可并行处理、可实现动态均衡等优势。同时,利用基于LTC3300芯片架构的均衡控制方案,用LTspice仿真软件对该芯片进行仿真研究,获取均衡参数;(3)研究设计了一种基于继电器网络控制的均衡电路。为实现有效的均衡,研究设计了一种基于继电器网络控制的均衡电路,该电路可以通过MCU实时控制和实现各种均衡,并具备高效、安全等特点;(4)研究设计了适用于均衡控制电路的中的充电模块。基于LT3741芯片,开发了恒压恒流电源输出,从而实现对电池和电池组的充电均衡。由于电池管理系统属于复合交叉,并且整个系统过于庞大,均衡控制电路和均衡充电模块,仍需要更多的软件层面的策略研发和实验验证。通过参加电池管理系统研发项目,参与了涵盖电池技术和电池管理系统开发的全过程,并在均衡技术方面开展了大量工作,相关更深层次的技术问题和基础问题,仍有待通过今后工作实践加深认识并解决。
[Abstract]:Energy crisis and environmental deterioration are the inevitable choice for the development of new energy vehicles in China, and have become a new type of strategic industry of national key development. Battery technology, motor control and battery management system are the three key points of new energy vehicles. Battery technology is the foundation. Battery management system has become the key technical problem in this field, which is the key technical problem of battery pack safety performance, which is derived from the characteristics of Li-ion power battery materials. Because of the inconsistency of power cell caused by production process and the complexity of actual operating conditions, the charged state of the cell is estimated accurately, and the energy between the cells or the battery pack is dynamically and dynamically adjusted in real time. Is the most important way to solve the problem of power battery safety in new energy vehicles. Therefore, battery charge state estimation and equalization technology are the two core technologies of battery management system. To develop high performance and high performance price ratio equalization circuit for specific applications and optimize equalization strategy is lithium ion battery equalization technology. In the course of research, In accordance with the needs and arrangements of the project team, the following four tasks were carried out: preparation of battery materials, development and testing of semi-batteries, performance tests of power batteries, and preparation of cathode ternary materials for lithium-ion batteries. Installation and charge-discharge performance test, master the preparation process of lithium ion battery, and use high current charging and discharging cabinet to test the charge-discharge performance of power battery of different specifications, such as lithium ferric phosphate, lithium manganese oxide, ternary battery, etc. The equalization circuit simulation and equalization strategy research are carried out. In view of the technical problems of battery management faced by new energy vehicles, a large number of domestic and foreign literature and works are consulted. On the basis of analyzing and summarizing the relevant equalization technology, combined with the widely used switching power supply technology, The detailed simulation of buck-boost converter and bi-directional flyback DC-DC equalization circuit is carried out. The results show that the equalization circuit based on buck-boost structure is easy to modularize, can be processed in parallel, and can realize dynamic equalization. Using the equalization control scheme based on the LTC3300 chip architecture, the simulation research on the chip is carried out by using the LTspice simulation software, and the equalization parameters are obtained. A kind of equalization circuit based on relay network control is designed. A kind of equalization circuit based on relay network control is studied and designed. The circuit can control and realize all kinds of equalization in real time through MCU, and has high efficiency. Based on LT3741 chip, the output of constant voltage and constant current power supply is developed. Because the battery management system belongs to the compound cross, and the whole system is too large, the equalization control circuit and the equalization charging module are realized. More software level strategy development and experimental verification are still needed. By participating in the battery management system research and development project, we are involved in the whole process of battery technology and battery management system development, and have done a lot of work in balancing technology. Related deeper technical problems and basic problems still need to be further understood and solved through future work practice.
【学位授予单位】:武汉纺织大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912

【参考文献】

相关硕士学位论文 前9条

1 贾星远;锂电池组充电器与BMS的研究与设计[D];南京邮电大学;2016年

2 刘伟伟;高效均衡锂电池充电器的研究与设计[D];山东大学;2016年

3 涂涛;锂离子电池组SOC估算和主动均衡的设计与实现[D];电子科技大学;2016年

4 郭沛;动力电池均衡技术比较分析与应用设计[D];天津理工大学;2016年

5 甘正飞;动力电池组分组式均衡方案的研究与设计[D];合肥工业大学;2015年

6 邱实;磷酸铁锂动力电池组主动均衡系统的研究[D];武汉理工大学;2014年

7 高宗伟;磷酸铁锂电池管理系统软件设计[D];重庆大学;2014年

8 石红滨;高效电池均衡策略研究[D];电子科技大学;2014年

9 武笛;基于双向反激直流变换器的锂离子电池均衡系统仿真研究[D];上海交通大学;2012年



本文编号:1690270

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1690270.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7e215***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com