静电纺丝制备ZnO纳米纤维电子传输层在倒置有机太阳能电池中的应用
发布时间:2018-04-04 11:31
本文选题:静电纺丝 切入点:纳米纤维 出处:《太原理工大学》2017年硕士论文
【摘要】:近年来有机太阳能电池的发展迅速,人们主要通过两个方向来的研究来提高电池的性能,一个是电学性能,另一个是光学性能。在电学性能的改善过程中主要是通过提高电荷的传输和收集能力,而在光学性能的改善是通过提高光的吸收。而目前电池结构改进和活性层改进已经进入瓶颈期,所以人们开始引入纳米结构来从这两个方向进行提高电池的性能,常见的方法有:一、在电池的活性层中加入金属纳米颗粒,利用金属纳米颗粒的局域表面等离子效应提高电池对光的吸收;二、在电池的电子传输层中引入纳米结构,通过纳米结构改变电子的传输方向和缩短电子活性层到电极的传输时间。本文从改善电池电学性能的方向出发,通过在器件中加入纳米结构来实现电池性能的改善。利用静电纺丝制备的ZnO纳米纤维加入到有机太阳能电池的电子传输层中,来研究了ZnO纳米纤维电子传输层对活性层为PTB7:PC70BM的倒置结构有机太阳能电池的影响。详细研究内容如下:1.研究了静电纺丝制备ZnO纳米纤维的方法,通过改变静电纺丝的前驱溶液浓度、注射泵推进速度、接收距离和高压电源输出电压四个参数来制备出直径可控的ZnO纳米纤维。通过ZnO纳米纤维前驱体ZnO/PVP纳米纤维的吸收光谱、ZnO的吸收光谱、ZnO纳米纤维的吸收光谱以及PVP的吸收光谱来研究了ZnO/PVP纳米纤维经过焙烧后PVP是否完全去除,同时研究了焙烧时间对ZnO纳米纤维直径的影响。通过实验最终PVP的含量为3 g,接收距离为12 cm,注射泵的推进速度为0.25 mL/min,电压的大小依次取14.45 KV、15.45 KV、16.45 KV、17.45 KV时可以制备出直径在45~90 nm之间的ZnO纳米纤维。2.设计了活性层为PTB7:PC70BM的倒置结构有机太阳能电池参考器件和实验器件,同时设计了静电纺丝制备ZnO纳米纤维电子传输层的方法。通过与ZnO纳米颗粒制备的电子传输层对比得出在电子传输层中加入ZnO纳米纤维后器件的性能由6.3%提高到6.8%。在实验过程中研究了静电纺丝过程中纳米纤维的接收时间对电池性能的影响和ZnO纳米纤维的直径对电池性能的影响。通过对比发现ZnO纳米纤维接收时间为30s时器件的Jsc提高比较明显同时对器件的FF的影响较小,当接收时间增加后Jsc依然提高但是FF会下降。同时ZnO纳米纤维的直径对器件的性能也有影响,随着ZnO的直径越小器件的Jsc提高越明显,FF也会随着直径的减小而增加。3.通过分析ZnO纳米纤维的不同接收时间的吸收光谱和不同直径的ZnO纳米纤维的吸收光谱,ZnO纳米纤维电子传输层因为光的散射光的吸收比ZnO纳米颗粒电子传输层的光的吸收强。在倒置结构有机太阳能电池中电子传输层对光的吸收增强,就减少了进入活性层中光的强度,是不利于电池的性能的,但是电池的性能得到提高,说明加入ZnO纳米纤维后是通过改善器件的电学性能来提高电池的性能。于是设计了单载流子器件来验证器件电学性能的提高,通过单载流子器件性能对比发现电子传输能力由1.25×10-4 cm2V-1s-1提高到1.83×10-4 cm2V-1s-1。验证了ZnO纳米纤维加入到倒置结构有机太阳能电池中能够提高器件对电子的抽取能力和电子从活性层到电极的传输能力。
[Abstract]:In recent years, the rapid development of organic solar cells, mainly to improve the performance of the battery through the study of two directions, one is the electrical properties, the other is in the process to improve the optical performance. The electrical properties are mainly by improving the ability of transmission and collection charge, and the optical properties are improved by increasing light absorption. The cell structure improvement and active layer improvement has entered the bottleneck, so people began to introduce the nano structure to improve the performance of the batteries from the two directions, the common methods are: a metal nano particles added in the active layer of the cell, improve the cell absorption of light by localized surface plasma effects of metal nanoparticles; two, the introduction of nano structure in the electron transport layer of the cell, through the nano structure change direction of transmission electron and active layer electrode to reduce the electronic transmission In order to improve the electrical properties. The direction of the battery, by adding the nano structure in the device to achieve the improvement of cell performance. The use of ZnO nanofibers prepared by electrospinning into the electron transport layer of organic solar cells, to study the effect of ZnO nano fiber electronic transmission structure of inverted organic solar cell layer on the activity the layer is PTB7:PC70BM. The detailed research contents are as follows: 1. the method of electrospun ZnO nanofibers were prepared by changing the concentration of precursor solution, electrostatic spinning, injection pump speed, four parameters of receiving distance and high voltage power supply output voltage to the fabrication of ZnO nano fiber with controllable diameter. The absorption spectra of ZnO nanoparticles fiber precursor of ZnO/PVP nanofibers, ZnO absorption spectra, absorption spectra of ZnO nano fiber absorption spectra and PVP of ZnO/PVP nano fiber after baking After burning PVP is completely removed, and the effects of roasting time on ZnO nano fiber diameter. The final content of experimental PVP was 3 G, the receiving distance is 12 cm, speed of injection pump is 0.25 mL/min, the size of the voltage are 14.45 KV, 15.45 KV, 16.45 KV, 17.45 KV can be made preparation of ZnO nano fiber.2. 45~90 in diameter nm between the design of the active layer of PTB7:PC70BM structure of inverted organic solar cell reference devices and experimental devices, while the design method of the electrospun ZnO nanofibers. The electron transport layer and ZnO nanoparticles were prepared by comparing the electron transport layer that join ZnO nanofibers in the electron transport layer after the performance of the device is increased from 6.3% to 6.8%. in the experimental process of receiving time nanofibers in electrospinning process influence on the performance of the battery and the diameter of the ZnO nanofibers on electricity Effect of pool performance. Through the comparison of ZnO nano fiber receiving time 30s device Jsc improves obviously and influence on FF device is small, when the receiving time increased after Jsc still increased but FF decreased. At the same time the performance of ZnO nano fiber diameter of the device also has the influence, with ZnO diameter small device Jsc increased more obviously, absorption spectra of FF will be decreased with the diameter of.3. by different receiving time analysis of ZnO nano fiber absorption spectra and different diameter of ZnO nanofibers, ZnO nanofibers electron transport layer because of the absorption of the light scattering ratio of ZnO nanoparticles electron transport layer of light strong absorption. Enhance the electron transport layer of light absorption in the inverted organic solar cell structure, reduces the intensity of light into the active layer, is not conducive to the performance of the battery, but the battery performance To improve, indicating that addition of ZnO nano fiber is to improve the performance of the battery through the electrical device to improve performance. So the design of single carrier device to verify the electrical properties of the device, by comparing the performance of single carrier devices found electronic transmission capacity from 1.25 cm2V-1s-1 to 1.83 * 10-4 * 10-4 cm2V-1s-1. verified ZnO nano fiber into the structure of inverted organic solar cells can improve the extraction ability of electronic devices and electrons from the active layer to the electrode transmission capacity.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM914.4
【参考文献】
相关期刊论文 前2条
1 刘冬月;秦文静;董妮;张强;杨利营;印寿根;;多孔ZnO纳米花电子传输层对有机太阳能电池性能的优化[J];光电子.激光;2014年07期
2 张天慧;朴玲钰;赵谡玲;徐征;杨磊;刘祥志;鞠思婷;;有机太阳能电池材料研究新进展[J];有机化学;2011年02期
,本文编号:1709774
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1709774.html