当前位置:主页 > 科技论文 > 电气论文 >

66kV大容量静止无功补偿设备控制与运行技术研究

发布时间:2018-04-20 20:54

  本文选题:静止无功补偿器 + 光控晶闸管 ; 参考:《华北电力大学》2017年硕士论文


【摘要】:随着国内电力系统的迅速发展,电压的等级要求越来越高,超高压和特高压电网已经成功投入运行,进而导致大容量的无功急需在电网运行中进行补偿。电力电子技术的高速发展,计算机控制技术的更新换代使得用户对电网的运行可靠性与电能质量的要求越来越高,高压大容量的补偿装置需要投入其中,这是提高系统稳定性的有效措施之一。实行峰谷分时电价后,高峰段的集中用电,造成了电网的电压波动加大,由于没有足够的动态无功调节手段,给部分电力用户造成了一定的影响。采用静止无功补偿器(SVC)是解决以上这些问题的有效措施之一,它在解决电网稳定性以及配电电能质量等问题中发挥了重要的作用,它是目前各国普遍采用的先进技术。SVC技术是利用并联电容器向系统提供无功,依靠可变电抗器调节和(或)电容器的投切向系统提供连续、可调的无功功率。本课题依据抚顺市李石寨变电站实际,研制了一套基于光控晶闸管的70Mvar TCR型66k V直挂SVC装置,在正常情况下,可降低抚顺电网一次有功功率网损,为系统提供无功功率70Mvar,提高系统调相调压能力和电网的输送能力,特别是配电系统调压能力提高10%以上,改善配电66k V侧电能质量[1]。为解决光控触发SVC补偿装置中,传输光信号的光纤一旦损坏,更换时必须重新订做一个相应长度的光纤,再次穿入新的光纤,以及光信号经过长距离的传输,损耗较大,易造成误触发,系统可靠性低等缺点。本课题采用LTT脉冲触发光纤分配装置,使系统的安装简单,维护方便,抗干扰性强,可靠性高,使用寿命长。最后通过对SVC装置在李石寨变电站投运前后电压曲线的不同,可以看出投运后66k V母线电压稳定在67.5±0.5k V范围内,提高了电能质量,降低了系统电压的波动幅度,改善了系统无功潮流的分布,满足了对望花热电厂稳定运行、高危客户可靠供电的要求,对系统安全稳定运行具有重大意义。
[Abstract]:With the rapid development of domestic power system, the requirement of voltage grade is higher and higher. The UHV and UHV power networks have been successfully put into operation, which leads to the large capacity of reactive power urgently needed to be compensated in the operation of the power network. With the rapid development of power electronics technology and the upgrading of computer control technology, the users have higher and higher requirements for the reliability and power quality of the power network, and the high-voltage and large-capacity compensators need to be put into it. This is one of the effective measures to improve the stability of the system. After the implementation of peak-valley time-sharing price, the concentrated power consumption in the peak section leads to the increase of the voltage fluctuation of the power network, and the lack of sufficient dynamic reactive power regulation means has a certain impact on some power users. SVC (static Var compensator) is one of the effective measures to solve these problems. It plays an important role in solving the problems of power network stability and distribution power quality. It is an advanced technology which is widely used in many countries at present. It uses shunt capacitors to provide reactive power to the system, and provides continuous and adjustable reactive power by variable reactor regulation and / or capacitor switching system. According to the actual situation of Fushun Lishizhai substation, a set of 70Mvar TCR type 66kV direct hanging SVC device based on optical thyristor is developed in this paper. Under normal conditions, it can reduce the loss of primary active power network in Fushun power grid. For the system to provide reactive power 70 Mvar. to improve the system phase modulation capacity and the transmission capacity of the grid, especially the distribution system voltage regulation capacity to increase by more than 10%, to improve the distribution 66kV side of the power quality [1]. In order to solve the problem of optical trigger SVC compensation device, once the optical fiber transmitting optical signal is damaged, it is necessary to make a new fiber of corresponding length when it is replaced, and the optical signal is transmitted over a long distance. It is easy to cause false trigger, low system reliability and other shortcomings. In this paper, LTT pulse triggered fiber distribution device is used to make the system easy to install, easy to maintain, strong anti-interference, high reliability and long service life. Finally, according to the difference of voltage curve before and after the operation of SVC device in Lishizhai substation, it can be seen that the voltage of 66 kV bus is stable in the range of 67.5 卤0.5 kV after operation, which improves the power quality and reduces the fluctuation range of system voltage. It improves the distribution of reactive power flow, meets the requirements of reliable power supply for Wanghua Thermal Power Plant and high risk customers, and is of great significance to the safe and stable operation of the system.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM761.12

【参考文献】

相关期刊论文 前10条

1 胡建华;司明起;刘国恩;;带有触发箱的66kV光控水冷阀组的设计与应用[J];电气技术;2013年03期

2 陈善坚;;谐波抑制和无功功率补偿技术研究[J];甘肃联合大学学报(自然科学版);2011年06期

3 安万洙;王剑;王晓艳;王芝茗;葛维春;宫恒宇;;66kV直挂式SVC双冗余控制系统[J];电气时代;2010年02期

4 吴波;郭育华;文宇良;;单相电力锁相环的改进和FPGA实现[J];电力电子技术;2008年04期

5 方冰沁;;静止无功功率补偿技术[J];科技信息(科学教研);2007年19期

6 唐杰;罗安;范瑞祥;周柯;贾煜;;无功补偿和混合滤波综合补偿系统及其应用[J];中国电机工程学报;2007年01期

7 舒泽亮;郭育华;汤坚;;基于FPGA的三相锁相环实现[J];电力电子技术;2005年06期

8 纪飞峰,周荔丹,姚钢,陈陈;基于同步对称分量法的静止无功补偿装置[J];中国电机工程学报;2005年06期

9 傅旭,王锡凡,杜正春;电力系统电压稳定性研究现状及其展望[J];电力自动化设备;2005年02期

10 范瑞祥,周腊吾,肖红霞;基于瞬时值的SVC无功及负序补偿算法[J];高压电器;2004年04期

相关硕士学位论文 前1条

1 李颖;基于Eurostag的电力系统若干稳定问题的研究[D];华北电力大学(北京);2004年



本文编号:1779379

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1779379.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3a1e3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com