当前位置:主页 > 科技论文 > 电气论文 >

烟台市福山区电力需求预测研究

发布时间:2018-04-26 11:30

  本文选题:电力需求预测 + 全社会用电量 ; 参考:《华北电力大学》2017年硕士论文


【摘要】:安全、稳定、坚强的电网环境是社会经济快速发展的重要保障,电力需求预测是电力市场分析的重要组成部分,是编制行业生产计划的基础,也是电力企业编制企业计划、投资项目和进行经营活动的基础。因此,准确、可靠的电力需求预测是提高电网规划水平的重要前提。本文以烟台市福山地区的电力需求情况为研究对象,通过收集基础数据,选择合理的数学模型,开展了烟台市福山区短期电力市场预测和中长期电力需求的预测研究。主要研究内容为:(1)根据用电量基础数据,分析了自2005年以来福山区负荷增长趋势、各产业用电量增长率、居民用电量增长率、负荷特性指标、最大峰谷差、最大负荷利用时间等数据,确定了预测变量及其相关变量。(2)建立基于时间序列法和用电性质法短期电力市场预测模型,确定了短期预测评价指标,研究了时间序列法对全社会用电量进行预测和用电性质法对售电量预测的预测过程,并与实际数据进行对比,验证了预测方法的有效性,同时也提出了短期电力市场预测的困难和提高短期电力市场预测准确率的措施。(3)通过产值单耗法、灰色系统理论法对福山区社会用电量进行中长期电力市场预测,并通过电力弹性系数法对预测结果进行校核及相关因素分析,通过预测对比发现灰色理论法并不适合烟台市福山区的长期电力市场预测,而产值单耗法中的中方案,比较适合烟台市福山区的中长期电力市场预测。本文的研究成果为烟台市福山区电力市场预测提供有力的指导和借鉴。
[Abstract]:A safe, stable and strong power grid environment is an important guarantee for the rapid development of social economy. Power demand forecasting is an important part of power market analysis, the basis for compiling industry production plans, and is also the basis for power enterprises to compile enterprise plans. The basis for investing in projects and conducting business activities. Therefore, accurate and reliable power demand prediction is an important prerequisite to improve the power network planning level. This paper takes the situation of electricity demand in Fushan area of Yantai City as the research object, through collecting the basic data, choosing the reasonable mathematical model, carrying out the short-term electricity market forecast and the medium and long term electricity demand forecast research of the Fushan District of Yantai City. Based on the basic data of electricity consumption, this paper analyzes the trend of load growth in Fushan District since 2005, the growth rate of electricity consumption of various industries, the rate of electricity consumption of residents, the characteristic index of load, the maximum peak and valley difference. Based on the time series method and the electricity nature method, the short-term power market forecasting model is established, and the short-term forecasting evaluation index is determined. The forecasting process of the time series method to the whole society electricity consumption and the electricity nature method to the electricity sale forecast are studied, and compared with the actual data, the validity of the forecasting method is verified. At the same time, it also puts forward the difficulty of short-term electricity market prediction and the measures to improve the accuracy of short-term electricity market forecasting. The paper makes a medium and long term power market forecast for social electricity consumption in Fushan area by using the method of unit consumption of output value and the grey system theory method. By checking the forecast results and analyzing the relevant factors by using the method of electric power elasticity coefficient, it is found that the grey theory method is not suitable for the long-term electricity market forecast in Fushan District of Yantai City, and the middle scheme of the output value unit consumption method is not suitable. More suitable for Yantai City Fushan long-term electricity market forecast. The research results of this paper provide powerful guidance and reference for power market prediction in Fushan District of Yantai City.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F426.61

【参考文献】

相关期刊论文 前10条

1 陈娟;吉培荣;卢丰;;指数平滑法及其在负荷预测中的应用[J];三峡大学学报(自然科学版);2010年03期

2 袁家海;丁伟;胡兆光;;电力消费与中国经济发展的协整与波动分析[J];电网技术;2006年09期

3 樊福梅,梁平;基于分形的社会总用电量及其构成预测[J];中国电机工程学报;2004年11期

4 丁勇,刘守生,胡寿松;一种广义小波神经网络的结构及其优化方法[J];控制理论与应用;2003年01期

5 蒋良奎;一种在组合预测中确定变权系数的方法[J];上海海运学院学报;2002年03期

6 宋超,黄民翔,叶剑斌;小波分析方法在电力系统短期负荷预测中的应用[J];电力系统及其自动化学报;2002年03期

7 魏伟,牛东晓,常征;负荷预测技术的新进展[J];华北电力大学学报;2002年01期

8 董景荣;基于模糊推理系统的非线性组合建模与预测方法研究(英文)[J];控制理论与应用;2001年03期

9 招海丹,余得伟;电力负荷短期预测的模糊专家系统修正方法[J];广东电力;2001年01期

10 黄伟,费维刚,王炳革,吴娟,蒋本一;模糊理论在中长期负荷预测中的应用[J];电力系统及其自动化学报;1999年04期



本文编号:1805838

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1805838.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户85b7a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com