基于蝙蝠算法和元胞自动机的配电网故障定位研究
发布时间:2018-05-04 08:42
本文选题:配电网 + 蝙蝠算法 ; 参考:《湖北工业大学》2017年硕士论文
【摘要】:随着社会的发展和人民生活水平的提高,电力系统的规模和容量不断增大,对供电可靠性以及故障定位、隔离、抢修等配电网方面的工作提出了更高的要求。智能电网成为电网技术发展的必然趋势,而配电网故障自动定位技术的研究是保证智能电网安全可靠运行的一项基础性工作,具有重要的现实意义。本文在综述了目前国内外对配电网故障区段定位研究现状的基础上,针对目前配电网的故障信息特征、配电网故障区段的定位方法,利用蝙蝠算法全局寻优能力对配电网故障区段进行定位搜索,搭建合适的配电网模型对多种故障定位进行深入研究。本文在分析了蝙蝠算法算法基本的仿生原理的基础上,结合配电网的结构特点,建立了合适的开关函数和评价函数,将蝙蝠算法应用到解决配电网故障定位的问题上。通过对单点仿真,多点故障仿真以及含信息畸变的故障仿真,表明蝙蝠算法能够进行故障定位。在多次运行仿真程序发现在一些情况下会陷入局部最优解。针对蝙蝠算法会陷入局部最优解的这一缺点本文引入了元胞自动机,利用元胞及其邻居的定义规则在局部寻优过程中反复进行局部交互作用以实现全局优化效果。并且增强了蝙蝠算法在搜索过程的多样性,提高了算法的全局寻优能力,能够很好的获得全局最优解。同时为了对提高蝙蝠算法的寻优速度,引入惯性函数系数,通过变化的惯性函数系数使蝙蝠算法收敛速度加快,定位准确度更高。利用仿真软件MATLAB对配电网不同的故障条件以及在含有信息畸变的情况进行了有效性和收敛性仿真分析。通过对蝙蝠算法和元胞蝙蝠算法仿真分析,表明改进之后的元胞蝙蝠算法具有收敛速度快、准确性高的优势,并且相比于粒子群算法具有较好收敛性与快速性。对后续继续研究配电网故障区段定位提供了一定的参考价值。
[Abstract]:With the development of the society and the improvement of people's living standard, the scale and capacity of the power system are increasing, which puts forward higher requirements for the reliability of power supply and the work of fault location, isolation, emergency repair and so on. Smart grid has become an inevitable trend in the development of power grid technology, and the research of automatic fault location technology in distribution network is a basic work to ensure the safe and reliable operation of smart grid, which has important practical significance. On the basis of summarizing the present situation of fault section localization in distribution network at home and abroad, this paper aims at the characteristics of fault information in distribution network and the location method of fault section in distribution network. The bat algorithm is used to locate the fault section of the distribution network, and a suitable distribution network model is built to study the fault location deeply. Based on the analysis of the basic bionic principle of the bat algorithm and the structural characteristics of the distribution network, an appropriate switching function and an evaluation function are established in this paper, and the bat algorithm is applied to solve the problem of fault location in the distribution network. Through single point simulation, multi-point fault simulation and fault simulation with information distortion, it is shown that the bat algorithm can locate the fault. It is found that in some cases the simulation program will fall into a local optimal solution. In this paper, we introduce cellular automata to solve the problem that bat algorithm will fall into local optimal solution, and make use of the definition rules of cell and its neighbors to perform local interaction repeatedly in the process of local optimization to realize the global optimization effect. It also enhances the diversity of the bat algorithm in the search process, improves the global optimization ability of the algorithm, and can obtain the global optimal solution very well. At the same time, in order to improve the searching speed of the bat algorithm, the inertia function coefficient is introduced, and the convergence speed of the bat algorithm is accelerated and the positioning accuracy is higher by changing the inertial function coefficient. The simulation software MATLAB is used to analyze the effectiveness and convergence of the distribution network under different fault conditions and in the case of information distortion. The simulation results of the bat algorithm and the Cellular bat algorithm show that the improved algorithm has the advantages of fast convergence and high accuracy, and has better convergence and rapidity compared with the particle swarm optimization algorithm. It provides a certain reference value for the further study of fault section location in distribution network.
【学位授予单位】:湖北工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM711
【参考文献】
相关期刊论文 前10条
1 张晟;;Petri网在配电网故障定位中的应用[J];机电信息;2016年27期
2 胡清;张强;;基于改进二进制粒子群算法的配电网故障定位[J];南京工程学院学报(自然科学版);2016年03期
3 柳岩妮;公茂法;王来河;公政;;基于混沌优化蝙蝠算法的含分布式电源配电网故障区段定位[J];电力科学与工程;2016年08期
4 罗钱;粟时平;刘桂英;尹惠;;基于混合算法的含DG配电网故障区段定位[J];电力系统及其自动化学报;2016年05期
5 宣恒农;苗春玲;赵冬;;基于蝙蝠算法的系统级故障诊断研究[J];计算机工程与科学;2016年04期
6 秦立军;杨万涛;;蚁群算法在配电网故障定位中的应用及其优化[J];电气应用;2015年22期
7 于群;张敏;曹娜;贺庆;石良;;基于模糊元胞自动机的电网故障演化模型[J];计算机应用;2015年09期
8 付家才;陆青松;;基于蝙蝠算法的配电网故障区间定位[J];电力系统保护与控制;2015年16期
9 裴文杰;谭阳红;汪l,
本文编号:1842365
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/1842365.html