当前位置:主页 > 科技论文 > 电气论文 >

先进绝热压缩空气储能电站热力系统动态特性研究

发布时间:2018-06-17 04:05

  本文选题:压缩空气储能 + 模块化建模 ; 参考:《华北电力大学》2017年硕士论文


【摘要】:与常规能源相比,太阳能和风能等可再生能源间歇性和不稳定性的缺点导致其发电并网困难。同时电网存在用电高峰和低谷,如果靠一些调节系统来调节电网的用电量,势必会导致锅炉和汽机部分负荷发电,导致效益低下。储能系统可以很好地弥补可再生能源发电的间歇性和不稳定性,用电高峰时用储能系统发电,用电低谷时用来储存电能。由于机组容量、能量密度、系统效率、输出功率、储能周期、充放电时间、运行成本、环境友好等因素,压缩空气储能电站已大规模被商业化应用。本文基于国内外关于压缩空气储能的研究成果,以TICC-500和中科院1.5MW示范电站为研究对象,依据能量、质量守恒方程以及流体力学、传热学、工程热力学等相关专业知识,查阅相关文献资料,结合各环节工质工作与流动因素,采用模块化建模的方法,研究了先进绝热压缩空气储能系统中压气机、换热器、联箱、储气罐、透平机等设备的数学模型;根据所研发的数学模型,利用C程序编写相应的算法,在STAR-90仿真支撑系统平台上建立对应的仿真模块,结合平台中已有的设备/部件(如空气边界条件、泵、压力节点、阀门等)的仿真模块,研发了具有一定通用性的先进绝热压缩空气储能电站热力系统实时动态仿真模型,基于模型模拟研究了此类型电站热力系统的动态特性。利用文献相关数据和曲线验证了仿真模型的静态精度和动态特性;基于仿真模型研究了先进绝热压缩空气储能电站热力系统动态特性。通过对仿真模型的验证以及电站动态特性分析表明:仿真模型能够正确反映机组正常运行状态下的运行过程以及机组热力系统动态特性,主要热力参数的变化与机组运行机理和热工调节过程相符,满足仿真实时性要求;仿真模型运算稳定、可靠,有良好的自稳定性;仿真模型可用于对此类机组的实时仿真系统开发以及运行特性研究,还可为机组控制系统的设计与分析提供良好的非线性对象模型。
[Abstract]:Compared with conventional energy, the intermittent and unstable shortcomings of renewable energy such as solar energy and wind energy make it difficult to connect to power grid. At the same time, there are peak and low power consumption in power grid. If the power consumption is adjusted by some regulating system, it will inevitably lead to partial load generation of boiler and turbine, resulting in low efficiency. Energy storage system can make up for the intermittence and instability of renewable energy generation. Energy storage system can be used to generate electricity at peak and storage at low point. Because of the factors such as unit capacity, energy density, system efficiency, output power, energy storage period, charge and discharge time, operation cost, environmental friendliness, compressed air energy storage power station has been widely used commercially. Based on the research results of compressed air energy storage at home and abroad, this paper takes TICC-500 and 1.5 MW demonstration power station of Chinese Academy of Sciences as the research object, according to energy, mass conservation equation, fluid mechanics, heat transfer, engineering thermodynamics and other related professional knowledge. Referring to the relevant documents and combining the working fluid work and flow factors in various links, the modular modeling method is used to study the compressor, heat exchanger, header, gas storage tank in the advanced adiabatic compressed air energy storage system. According to the developed mathematical model, the corresponding algorithm is compiled by C program, and the corresponding simulation module is established on the platform of STAR-90 simulation support system. Combined with the simulation module of equipments / components (such as air boundary condition, pump, pressure node, valve, etc.), the real-time dynamic simulation model of thermal power system of advanced adiabatic compressed air storage power station with certain generality is developed. The dynamic characteristics of the thermal power system of this type of power station are simulated based on the model. The static accuracy and dynamic characteristics of the simulation model are verified by using the relevant data and curves, and the dynamic characteristics of the thermal power system of the advanced adiabatic compressed air storage power station are studied based on the simulation model. Through the verification of the simulation model and the analysis of the dynamic characteristics of the power station, it is shown that the simulation model can correctly reflect the operation process of the unit under normal operation state and the dynamic characteristics of the unit thermal system. The variation of the main thermodynamic parameters is consistent with the operation mechanism of the unit and the process of thermal regulation, which meets the real-time requirements of the simulation, and the simulation model is stable, reliable and self-stable. The simulation model can be used to develop the real-time simulation system and study the operation characteristics of this kind of unit. It can also provide a good nonlinear object model for the design and analysis of the unit control system.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TK02;TM62

【参考文献】

相关期刊论文 前10条

1 李书奇;程江华;庄丽;侯琳琳;刘畅;张子磊;;高压比增压器高原适应性改进配机试验研究[J];小型内燃机与车辆技术;2016年04期

2 本刊讯;;国家电网公司在京发布《国家电网公司促进新能源发展白皮书(2016)》[J];电力与能源;2016年02期

3 向宏辉;侯敏杰;葛宁;刘志刚;杨荣菲;;轴流压气机试验若干异常气动现象表征与机理分析[J];航空动力学报;2016年03期

4 潘成蓉;龙勇;何攻;;微电网与大电网合作动因及影响因素分析[J];生态经济;2016年03期

5 张军;戴炜轶;;国际储能技术路线图研究综述[J];储能科学与技术;2015年03期

6 李雪梅;杨科;张远;;AA-CAES系统储气室热力学特性研究[J];工程热物理学报;2015年03期

7 陈来军;梅生伟;王俊杰;卢强;;面向智能电网的大规模压缩空气储能技术[J];电工电能新技术;2014年06期

8 卫明;王永泓;宋华芬;;空气冷却燃气透平特性算法的研究[J];动力工程学报;2014年05期

9 席奂;李明佳;何雅玲;陶文铨;;CE图:一种余热利用循环及工质选择的定量评价方法[J];西安交通大学学报;2013年09期

10 陈海生;刘金超;郭欢;徐玉杰;谭春青;;压缩空气储能技术原理[J];储能科学与技术;2013年02期

相关博士学位论文 前2条

1 李雪梅;先进绝热压缩空气储能系统部件特性对系统性能影响的研究[D];中国科学院研究生院(工程热物理研究所);2015年

2 张新敬;压缩空气储能系统若干问题的研究[D];中国科学院研究生院(工程热物理研究所);2011年



本文编号:2029588

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2029588.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3e78a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com