钒酸钠与铁氰化铁钠离子电池正极材料的合成及性能研究
本文选题:钠离子电池 + NaV_6O_(15) ; 参考:《合肥工业大学》2017年硕士论文
【摘要】:钠离子电池(SIBs)因具有原料储量丰富,价格低廉,安全性高等优点而备受青睐。其中寻找一种无毒、低成本、高比容量、结构稳定的正极材料是发展SIBs必经之路。本论文以此为出发点,对钒酸钠及铁氰化铁两种SIBs正极材料进行研究。氧化物型正极材料钒酸钠(NaV_6O_(15))因具备较大的Na+脱嵌空隙和优异的电子电导而受到广泛关注。为了进一步改善其电化学性能,本研究一方面通过PVP调控形貌合成NaV_6O_(15)纳米棒,另一方面采用一步水热法制备NaV_6O_(15)/C复合电极材料。另一种含氰根配位的普鲁士蓝类似物(FeFe(CN)_6)因具有独特的三维开放式框架结构,较高的理论比容量,合成方法简单等优势而成为新型SIBs正极材料。本研究对比了溶液共沉淀法和单一源沉淀法制备不同质量的FeFe(CN)_6电化学性能,并探讨Na+浓度对其影响。主要取得如下研究成果:1.采用PVP辅助水热法成功制备NaV_6O_(15)纳米棒,探讨了 PVP含量对NaV_6O_(15)形貌及性能的影响。其中添加0.1 g PVP可获得长1~2um,宽~100 nm尺寸均一的纳米棒,且电化学性能最佳:在20mAg-1、1.5-3.8V下,首次放电比容量为157 mAh g-1,20次循环后的容量保持率为71.38%,即使在200 mA g-1高倍率下,仍能释放121mAhg-1。此外,降低放电深度,在2.0-3.8V内测得2.69/2.40V氧化/还原峰,且样品的放电比容量为113 mAh g-1,循环50次后的容量保持率为86.55%,表现出较好的倍率循环性和高比容量性。交流阻抗法计算Na+循环前后的扩散速率分别为3.46× 10-12和2.71 × 10-12 cm2 s-1,并结合NaV_6O_(15)的态密度计算,结果表明NaV_6O_(15)具有较好的离子电导和电子电导。2.以葡萄糖为碳源,采用一步水热法制备500 nmNaV_6O_(15)/C纳米棒复合材料,探讨了C含量对材料性能的影响。电化学性能随C含量的增加先增后减,当添加15.67%C时性能最佳:样品包覆一层4 nm均匀厚度的无定型碳层,该碳层不仅抑制了 NaV_6O_(15)晶粒的长大,还提高了它的电子电导率。在20、200 mA g-1下,首次放电比容量分别为169.03、145.8 mAh g-1,且库伦效率均在80%以上。3.以FeCl_3、K_3Fe(CN)_6为原料,采用溶液共沉淀法制备500 nm FeFe(CN)_6纳米颗粒。尽管在高倍率(≥5 C)下的容量仅为理论比容量的19%,但0.1 C倍率时的首次放电比容量为115.467 mA h g-1 200次循环后的容量保持率为63%,表现出优异的循环性能。而以K_3Fe(CN)_6为单离子源,Na2S203辅助合成150-250nm,晶格较完美的FeFe(CN)_6纳米立方块,在0.1 C下的充/放电比容量为125.12/124.72 mA h g-1,首次库伦效率高达95.6%,且以0.5C倍率循环100次后的容量保持率为94%。5 C、10C及20 C倍率下的比容量分别为103.24、100.81和85.87 mAh g-1,表现出优良的倍率循环性能。此外增大Na+浓度有利于提高FeFe(CN)_6的放电容量,低倍率下最高可达134.689 mAh g-1。4.采用第一性原理和非原位XRD探讨Fe_3+在3d轨道的充放电机制。循环伏安曲线中3.68/3.46 V氧化还原峰对应与C相邻的低自旋FeLS2+/FeLs3+嵌钠反应:FeHS3+[FeLS3+(CN)_6|(?)NaFeHS3+[FeLS2+(CN)_6],而 3.08/2.81 V 峰则对应与 N 相连的高自旋 FeHS2+/FeHS3+嵌钠反应:NaFeHS3+[FeLS2+(CN)_6](?)Na2FeHS2+[FeLS2+(CN)_6]。非原位XRD结果表明在充放电过程中材料的结构很稳定,有利于Na+的可逆脱嵌。
[Abstract]:Sodium ion battery (SIBs) is favored because of its rich material reserves, low price and high safety. It is a necessary way to find a nontoxic, low cost, high specific capacity, and stable structure. This paper is the starting point for the study of two SIBs positive materials of sodium vanadate and ferricyanide. Sodium vanadate (NaV_6O_ (15)) of the type cathode material has been widely concerned for its large Na+ inlay gap and excellent electronic conductance. In order to further improve its electrochemical performance, this study on the one hand synthesis of NaV_6O_ (15) nanorods by PVP morphology, on the other hand, uses one step hydrothermal method to prepare NaV_6O_ (15) /C composite electrode material. The Prussian blue analogue containing cyanogen ligand (FeFe (CN) _6) has become a new SIBs cathode material for its unique three-dimensional open frame structure, higher theoretical ratio and simple synthesis method. This study compared the electrochemical properties of FeFe (CN) _6 with different mass by solution co precipitation and single source precipitation, and discussed Na. The main results are as follows: 1. the NaV_6O_ (15) nanorods were successfully prepared by PVP assisted hydrothermal method, and the effect of PVP content on the morphology and properties of NaV_6O_ (15) was investigated. The addition of 0.1 g PVP can obtain a nanoscale rod with a length of 1 to 2um and a wide to 100 nm, and the electrochemical performance is the best: under 20mAg-1,1.5-3.8V, the first The capacity retention rate of the secondary discharge ratio of 157 mAh g-1,20 was 71.38%. Even at the high rate of 200 mA g-1, 121mAhg-1. could still be released, and the discharge depth was reduced. The 2.69/2.40V oxidation / reduction peak was measured in 2.0-3.8V, and the discharge ratio of the sample was 113 mAh g-1, and the capacity retention rate after 50 cycles was 86.55%. The diffusion rate of the Na+ cycle was 3.46 * 10-12 and 2.71 x 10-12 cm2 S-1 respectively before and after the AC impedance method. The results showed that NaV_6O_ (15) had better ionic conductance and electron conductance.2. with glucose as carbon source, and 500 nm was prepared by one step hydrothermal method. NaV_6O_ (15) /C nanorod composite was used to investigate the effect of C content on the properties of materials. The electrochemical performance increased first and then decreased with the increase of C content. When 15.67%C was added, the performance was the best: the sample coated an amorphous carbon layer with a uniform thickness of 4 nm. The carbon layer not only inhibited the growth of NaV_6O_ (15) grain, but also increased its electronic conductivity. At the same time, the electron conductivity was increased. Under 200 mA g-1, the initial discharge specific capacity is 169.03145.8 mAh g-1, and the efficiency of Kulun is more than 80%.3. with FeCl_3, K_3Fe (CN) _6 as raw material and the solution co precipitation method is used to prepare 500 nm FeFe nanoparticles. Although the capacity of the high ratio (> 5) is only 19% of the theoretical specific capacity, the capacity of the first discharge ratio at the 0.1 ratio is the first discharge capacity. The capacity retention rate of 115.467 mA h g-1 200 cycles is 63%, showing excellent cycling performance. With K_3Fe (CN) _6 as a single ion source, Na2S203 assisted synthesis of 150-250nm, and the perfect lattice of FeFe (CN) _6 nano cubic block in lattice, and the capacity of charge / discharge ratio of 125.12 under 0.1 C. The first Kulun efficiency is up to 95.6% After 100 cycles, the capacity retention rate is 94%.5 C, the specific capacity of 10C and 20 C multiplier is 103.24100.81 and 85.87 mAh g-1, respectively, showing excellent multiplier cycle performance. In addition, increasing Na+ concentration is beneficial to improve the discharge capacity of FeFe (CN) _6, and the highest rate of 134.689 mAh is up to the first principle and non in situ exploration. The redox peak of the 3.68/3.46 V in the cyclic voltammetry curve corresponds to the low spin FeLS2+/FeLs3+ sodium reaction adjacent to the C: FeHS3+[FeLS3+ (CN) _6| (?) NaFeHS3+[FeLS2+ (CN) _6]. The results of FeLS2+ (CN) _6]. in situ XRD show that the structure of the material is stable during charging and discharging, which is conducive to the reversible deintercalation of Na+.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【相似文献】
相关博士学位论文 前8条
1 马全新;锂离子电池富锂锰基正极材料与电极制备及改性研究[D];哈尔滨工业大学;2017年
2 冀转;过渡金属六氰配合物作为二次电池正极材料的应用研究[D];中国地质大学;2017年
3 高鹏;锂离子电池富锂三元正极材料Li_(1+x)(NiCoMn)_yO_2的合成与性能研究[D];哈尔滨工业大学;2016年
4 闵秀娟;磷酸钒锂基正极材料的结构与循环稳定性研究[D];哈尔滨工业大学;2017年
5 胡思江;核壳结构富锂锰基层状正极材料的研究[D];中国地质大学;2015年
6 申永强;铁基氟化物作为锂/钠离子电池正极材料的制备及性能研究[D];湘潭大学;2016年
7 牛玉斌;聚阴离子电极材料的制备及其储钠行为研究[D];西南大学;2017年
8 李梦婷;新型晶态多孔材料的设计合成及其应用于荧光传感和电池材料的研究[D];东北师范大学;2017年
相关硕士学位论文 前10条
1 罗垂意;无钴镍基正极材料理论计算与实验改性研究[D];江西理工大学;2017年
2 何林兵;复合正极材料及其在锂离子电池中的应用[D];浙江大学;2017年
3 李文升;动力锂电正极材料磷酸铁锂的研究[D];天津大学;2016年
4 王绪君;过渡金属掺杂的锂电池正极材料研究[D];青岛大学;2017年
5 吕庆文;高容量镍基正极材料LiNi_(0.9)Mn_(0.1)O_2的合成及改性研究[D];江西理工大学;2017年
6 周有池;LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiNi_(0.4)Al_(0.2)Mn_(0.4)O_2正极材料的制备与性能研究[D];江西理工大学;2017年
7 郭进康;长寿命正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的合成及电化学性能研究[D];江西理工大学;2017年
8 刘帆;溶胶凝胶法制备LiFePO_4正极材料及掺杂改性研究[D];江西理工大学;2017年
9 郭少帅;锰基富锂层状材料0.5Li_2MnO_3·0.5LiMO_2(M=Co、Mn、Ni)的合成与性能研究[D];复旦大学;2014年
10 周森森;锂离子电池正极材料LiFeBO_3/C的合成与改性研究[D];南京理工大学;2015年
,本文编号:2068825
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2068825.html