超级电容电压均衡系统的研究
发布时间:2018-07-10 09:38
本文选题:超级电容 + DC/DC ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:超级电容作为新型“绿色”储能元件因其比功率高、充电速度快以及循环使用寿命长等特点,在储能领域受到了的普遍关注。然而,由于制造工艺问题,超级电容单体参数会出现不一致的现象。电容单体参数的不一致会导致其在串联使用时,出现电压不一致的问题。性缩短其使用寿命,增加故障率,制约了其大规模实际应用。因此本文通过对超级电容均衡策略和拓扑结构的研究,设计了一款超级电容电压均衡系统。本文设计的超级电容电压均衡系统采用了电压一致性策略和DC/DC动态均衡结构。其具体均衡过程是将储能系统整体能量抽取出来,通过一定均衡控制策略,将能量转移到电压低于平均值的超级电容单体中,以实现能量在超级电容单体间的均衡。为了提高系统的工作效率和可靠性,拆分均衡系统中的关键点深入研究。其关键模块分为:DC/DC功率变换器、模块化DC/DC电源和均衡控制器三部分。首先,对DC/DC功率变换器模块进行拓扑结构设计,需要将储能系统整体电压转化成模块电压,为模块化DC/DC电源和均衡控制器供电,以实现能量转移的目的。为了使电路能够大功率、高频率运行,本文设计的拓扑结构为基于新型开关管Si C MOSFET的隔离型移相全桥变换器。经电路仿真及实验验证,证明了结构设计的合理性。其次,对模块化DC/DC电源电路进行了创新性设计。这一电路需要将模块电压转化为超级电容单体充电电压,为电压低于平均值的电容充电。为了减小充电电路损耗,提高效率,本文分析了传统有源钳位正激变换电路在不同阶段开关管及续流二极管的工作状态,在此基础上设计了一种新型同步整流有源钳位正激变换器。通过减小输出电路续流二极管的导通时间,降低了二极管的导通损耗,提高了效率。通过对新型电路的仿真和实验验证,证明了其功能的合理性。然后,对均衡控制器进行硬件电路和软件程序设计,以实现电压一致性均衡策略,通过采集超级电容单体电压,控制模块化DC/DC电源的开启或关断。为了减少超级电容的充放电次数,增加超级电容的使用寿命,提高系统的可靠性,本文在传统电压一致性策略的基础上进行了改进。并对超级电容储能系统进行了参数识别程序设计,以实现对超级电容单体状态的实时监测。最后,搭建一个由64个储能模块,每个模块8个超级电容单体组成的储能系统作为实验平台,对超级电容电压均衡系统进行实验。通过对超级电容电压均衡系统的储能部分的电容单体电压进行电压监测记录后,得出的实验结果可以看出,经超级电容电压均衡系统均衡后的超级电容单体电压达到了较好的一致性。
[Abstract]:As a new type of "green" energy storage element, super capacitor has attracted much attention in the field of energy storage because of its high specific power, fast charging speed and long cycle life. However, due to manufacturing process problems, supercapacitor cell parameters will be inconsistent. The inconsistency of capacitance parameters will lead to the problem of voltage inconsistency when it is used in series. It can shorten its service life, increase the failure rate, and restrict its large-scale practical application. Therefore, a super capacitor voltage equalization system is designed by studying the strategy and topology of super capacitor equalization. The super capacitor voltage equalization system designed in this paper adopts voltage consistency strategy and DC- / DC dynamic equalization structure. The specific equalization process is to extract the whole energy from the energy storage system and transfer the energy to the super capacitor cell with a voltage lower than the average through a certain equalization control strategy to realize the energy equalization between the super capacitor cells. In order to improve the efficiency and reliability of the system, the key points in the split equalization system are deeply studied. The key modules are divided into three parts: the DC / DC power converter, the DC / DC power supply and the equalization controller. Firstly, the topology of DC / DC converter module is designed. It is necessary to convert the whole voltage of energy storage system into module voltage, and supply power to the modularized DC / DC power supply and equalization controller to achieve the purpose of energy transfer. In order to make the circuit run at high power and high frequency, the topology designed in this paper is an isolated phase-shifted full-bridge converter based on a novel switching transistor (sic) MOSFET. The rationality of the structure design is proved by circuit simulation and experiment. Secondly, the modularized DC / DC power supply circuit is innovatively designed. This circuit needs to convert the module voltage to the supercapacitor cell charge voltage and charge the capacitor with a voltage lower than the average. In order to reduce the loss of the charging circuit and improve the efficiency, this paper analyzes the operating state of the traditional active clamp forward conversion circuit in different stages of the switch tube and the continuous current diode. On this basis, a novel synchronous rectifier active clamp forward converter is designed. By reducing the turn-on time of the output circuit, the on-loss of the diode is reduced and the efficiency is improved. Through the simulation and experimental verification of the new circuit, the rationality of its function is proved. Then, the hardware circuit and software program of the equalization controller are designed to realize the voltage consistency equalization strategy, and the modularized DC / DC power supply is turned on or off by collecting the supercapacitor cell voltage. In order to reduce the charge and discharge times of the super capacitor, increase the service life of the super capacitor and improve the reliability of the system, this paper improves the conventional voltage consistency strategy. The parameter identification program of super capacitor energy storage system is designed to realize the real-time monitoring of super capacitor cell state. Finally, an energy storage system consisting of 64 energy storage modules and 8 super capacitor units per module is built as an experimental platform to test the super capacitor voltage equalization system. Through the voltage monitoring and recording of the capacitor cell voltage in the storage part of the super capacitor voltage equalization system, the experimental results can be seen. The supercapacitor cell voltage after the equalization of super capacitor voltage equalization system achieves good consistency.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM46;TM53
【参考文献】
相关期刊论文 前10条
1 胡景泰;吴婷;梁海泉;陈宇飞;;超级电容器电压均衡电路研究[J];电器与能效管理技术;2016年05期
2 李桂丹;彭亮;李华;邵鹏;;串联超级电容组的能效均衡优化控制[J];计算机仿真;2015年12期
3 梁美;郑琼林;可,
本文编号:2112971
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2112971.html