并网型光伏电站的发电功率短期预测研究与实现
[Abstract]:Photovoltaic power generation is favored by many countries because of its clean and pollution-free. However, because of the randomness and fluctuation of the output power, the photovoltaic power station will have a certain impact on the public power grid when it is connected to the grid. This is extremely detrimental to the normal operation of the power grid. Therefore, the accurate short-term prediction of the generation power of grid-connected photovoltaic power stations is beneficial to the rational distribution and planning of the proportion of photovoltaic and conventional energy in the power dispatching department, and to the timely adjustment of the dispatching plan. Make the power system run in a safe, stable and economical way. Based on a large number of domestic and foreign literatures, this paper takes the historical data of a photovoltaic power plant in Gansu as the research object, and establishes a prediction model by using the HS-ESN model. Then the short-term prediction analysis of PV power generation is carried out. Finally, by mixing C # and MATLAB, the design of PV power short-term prediction system is introduced. Based on the above description, the research contents of this paper mainly include the following aspects: firstly, the output characteristics of photovoltaic cells are combed by using the simulation model established by MATLAB. The influence of solar radiation intensity and temperature on photovoltaic power generation is analyzed, and the main factors affecting photovoltaic power generation are determined. Then each factor is composed of feature vector and the similar day selection algorithm is used to extract the similar day and training sample. Secondly, based on the in-depth study of echo state network (Echo State Network) algorithm, a hybrid algorithm is proposed to optimize echo state network algorithm based on Harmony search (HS) algorithm. In this paper, HS algorithm is used to optimize the reserve cell parameters of ESN algorithm, and the precision of ESN algorithm is improved effectively. The HS-ESN algorithm is applied to the short-term prediction of photovoltaic power generation. The effectiveness of introducing the similar day selection algorithm is verified by forecasting PV power under different weather types by different prediction models. The performance of HS-ESN model is better than that of single ESN model and other models commonly used at present at the same time the performance of HS-ESN model is better than that of single ESN model and other commonly used models. Finally, according to the prediction model and method proposed in this paper, a PV power short-term forecasting system is designed, and the demand analysis and structure design of the system are carried out. The prediction system has the basic modules of short-term prediction of photovoltaic power generation, including login interface and data import module, short-term power generation prediction module, report statistics module, data query and output module, so it has certain practical value.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM615
【参考文献】
相关期刊论文 前10条
1 王新友;王晨华;张yN;鲁江;;基于改进型ESN的短期风电功率预测[J];自动化与仪器仪表;2017年02期
2 张程熠;唐雅洁;李永杰;高强;江全元;;适用于小样本的神经网络光伏预测方法[J];电力自动化设备;2017年01期
3 赵越;;基于电流滞环跟踪PWM逆变器双闭环控制研究[J];电子科技;2016年12期
4 孔凡太;戴松元;;我国太阳能光伏产业现状及未来展望[J];中国工程科学;2016年04期
5 李乐;刘天琪;;基于近邻传播聚类和回声状态网络的光伏预测[J];电力自动化设备;2016年07期
6 田中大;李树江;王艳红;王向东;;基于混沌理论与改进回声状态网络的网络流量多步预测[J];通信学报;2016年03期
7 颜苏莉;孙婧豪;;我国光伏产业的发展现状、存在问题及解决之道[J];华北电力大学学报(社会科学版);2016年01期
8 张晋雁;陶宏才;;回声状态网络研究[J];成都信息工程学院学报;2015年06期
9 彭光虎;马景超;龚文杰;段晓燕;张智晟;;基于ESN的光伏发电功率预测模型研究[J];青岛大学学报(工程技术版);2015年03期
10 孔波利;崔丽艳;丁钊;李现伟;王以笑;;基于风光混合模型的短期功率预测方法研究[J];电力系统保护与控制;2015年18期
相关硕士学位论文 前10条
1 罗浩;高频隔离无中间直流环节光伏并网逆变器研究[D];北京交通大学;2016年
2 李雪城;高频隔离型光伏并网逆变器的研究[D];北京交通大学;2014年
3 曲洪达;并网型光伏发电功率预测系统的研究与实现[D];华北电力大学;2014年
4 杨德全;基于神经网络的光伏发电系统发电功率预测[D];华北电力大学;2014年
5 张佳伟;光伏并网发电系统短期发电功率预测研究[D];南京信息工程大学;2013年
6 冯志诚;太阳能光伏发电性能影响因素的研究[D];内蒙古工业大学;2013年
7 王旭峰;并网型光伏电站发电功率的建模与预测研究[D];华北电力大学;2013年
8 王磊;光伏发电系统输出功率短期预测技术研究[D];合肥工业大学;2012年
9 赵欣宇;光伏发电系统功率预测的研究与实现[D];华北电力大学;2012年
10 彭倬;基于模糊控制技术的三相光伏并网逆变器的研究[D];湖北工业大学;2011年
,本文编号:2130859
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2130859.html