基于多元状态估计的电站风机故障预警研究及系统开发
[Abstract]:Fan is an important auxiliary equipment in thermal power station. Its running state directly affects the economy and safety of electric power production. With the rapid development of large capacity and high-parameter thermal power units, the reliability of fan equipment is required higher in power plants. At present, the status recognition technology of industrial equipment is developing from condition monitoring and fault diagnosis to fault warning. This paper mainly studies the fault warning method of power plant fan based on multivariate state estimation technology, which can save valuable time to take measures to reduce the fault loss or avoid the fault, and bring huge economic benefits to the power generation enterprise. In this paper, the structure and common faults of fan are studied, the monitoring signal of fault is analyzed, and the monitoring signal that can be obtained by fan in power station is summarized. On this basis, according to the principles of "available", "fault sensitivity" and "minimization", the fan MSET modeling variables are selected. Then the historical data are eliminated, bearing temperature 3 is taken 1, standardized three items are preprocessed, and the dynamic process memory matrix construction method is put forward to establish the MSET model of fan normal state. Finally, using the historical data of the normal state of the induced fan in a power plant for modeling and simulation, it is verified that the established fan state model has a high accuracy. The research on the state modeling of MSET fan shows that the difference between the observation vector and the estimation vector is rich in fault information. In order to fully mine fault information and capture fault development process, the similarity function of observation vector and estimation vector is proposed to measure the difference between them quantitatively, and according to the importance of each variable to fault early warning. The weight of each variable in the similarity function is determined by analytic hierarchy process (AHP). Then the sliding window statistics method is used to reduce the influence of random interference and the reasonable threshold of fault warning is determined according to the average similarity boundary value of normal state. A fault warning method based on MSET fan model is proposed. If the average similarity of the new observation vector exceeds the warning threshold, then the fault alarm can be issued to the operator to deal with it. Finally, an application study is carried out on a fan fault and three kinds of simulated faults in a power plant. The results show that the proposed method can detect the early fault of fan and realize accurate early warning of fan fault. Using the early-warning method and B / S structure proposed in this paper, a set of power fan fault warning system is developed. The practical application shows that the fault early warning method based on MSET fan state model can realize accurate fan fault early warning. At the same time, it provides a feasible solution for other industrial equipment failure warning.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM621
【相似文献】
相关期刊论文 前10条
1 任国贤;;小型风机故障及修理[J];电机技术;1986年04期
2 张怀亮,朱腊梅;计算机辅助风机故障及状态管理[J];风机技术;2002年04期
3 杨宏晖;侯宏;曾向阳;孙进才;;基于声信号人耳听觉谱特征的风机故障诊断[J];仪器仪表学报;2009年01期
4 黄生琪,周菊华;风机故障判断并处理[J];电站辅机;2003年02期
5 曾伟泉;曾志生;;煤气鼓风机故障诊断实例分析[J];中国设备工程;2008年10期
6 刘旭;王莉;;基于多征兆系统的模糊Petri网在风机故障诊断中的应用[J];黑龙江科技信息;2008年35期
7 罗长更;曹广忠;潘剑飞;;基于小波和神经网络的风机故障诊断系统设计[J];应用声学;2008年03期
8 张宇;罗长更;;一种基于LabVIEW DSP模块的风机故障诊断系统[J];计算机与现代化;2010年06期
9 王惠;;浅谈风机的事故及处理措施[J];民营科技;2012年11期
10 章瑞平,张笑秋;灰色关联度法对风机故障的自动诊断[J];中国设备管理;1997年10期
相关会议论文 前4条
1 王雷;李佳;孙红春;林文强;;基于知识规则的风机故障诊断系统的研究与实现[A];2010年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第二次全体委员大会论文集[C];2010年
2 唐邵军;陈平;谢志江;;基于全息谱分析的风机故障诊断系统的研究[A];设备监测与诊断技术及其应用——第十二届全国设备监测与诊断学术会议论文集[C];2005年
3 胡汉辉;谭青;;基于小波包分析及模糊识别的风机故障诊断[A];第二十九届中国控制会议论文集[C];2010年
4 许秋慧;李红;;唐钢南区2~#高炉风机故障焖炉实践[A];河北冶金学会炼铁技术暨学术年会论文集[C];2007年
相关重要报纸文章 前1条
1 通讯员 高庆华邋记者 张云普;大庆电力实业公司获中国石油建设工程优秀QC小组成果一等奖[N];中国石油报;2008年
相关硕士学位论文 前10条
1 刘东;基于多变量数据的矿井风机故障预测系统的研究[D];河北工程大学;2016年
2 刘涛;基于多元状态估计的电站风机故障预警研究及系统开发[D];华北电力大学(北京);2016年
3 王衍学;基于小波和支持向量机的风机故障趋势预测研究[D];广西大学;2006年
4 唐炳剑;小波分析及其在风机故障诊断中的应用[D];山东大学;2010年
5 胡友林;基于粗糙集的风机故障诊断专家系统研究[D];武汉科技大学;2006年
6 宋子辉;基于模糊神经网络技术的D350高速风机故障诊断系统研究[D];中南大学;2004年
7 成健;模糊诊断法在风机故障诊断中的研究与应用[D];辽宁科技大学;2012年
8 贺鹏;基于多小波理论的风机故障诊断技术研究[D];天津理工大学;2013年
9 高明;火电厂送风机故障预警系统的研究[D];华北电力大学;2013年
10 徐盛龙;基于DSP与ARM相结合的风机故障诊断及监测系统设计[D];中国矿业大学;2014年
,本文编号:2143836
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2143836.html