当前位置:主页 > 科技论文 > 电气论文 >

二烷硫基噻吩—二噻并苯并二噻吩基共轭聚合物的合成与研究

发布时间:2018-07-25 14:37
【摘要】:活性层材料是聚合物太阳能电池器件的核心部分,其性能的优化和改善对提高太阳能电池器件的效率有着很重要的意义。通过对活性层中的给体材料的优化设计,可以得到光电性能优异的有机太阳能电池器件。本文是在DTBDT单元的5,10位上引入噻吩硫的烷基侧链,首次合成出一种新的电子给体单元DTBDT-TS。将给体单元DTBDT-TS与受体单元(2,1,3-苯并噻二唑/5,6-双氟代2,1,3-苯并噻二唑、萘并[1,2-c:5,6-c']双[1,2,5]噻二唑、噻并异靛蓝等的衍生物)通过Stille偶联反应合成出了系列窄带隙D-A型共聚物,并对聚合物的热稳定性、吸收光谱和电化学性能进行表征;对聚合物的分子最优模型、二面角和HOMO、LUMO能级轨道进行估算,对聚合物的光伏性能进行初步的研究。首先,将烷硫基噻吩侧链引入到DTBDT单元上,制备了电子给体单元DTBDT-TS。以DTBDT-TS与缺电单元BT与FBT,2-丁基辛基噻吩作共轭π桥,通过Stille偶合得到两种窄带隙共轭聚合物PDTBDT-TS-DTBT和PDTBDT-TS-DTFBT。表征结果表明共轭聚合物PDTBDT-TS-DTBT和PDTBDT-TS-DTFBT在300-800 nm范围对太阳光有吸收,光学带隙分别为1.67和1.68 eV,LUMO分别为-3.55和-3.71 eV;HOMO分别为-5.22和-5.39eV。但是在溶解性能实验中发现上述聚合物在常用有机溶剂中溶解性差。因此引入更大烷基侧链(2-辛基十二烷基),通过对受体单体的优化设计来改善聚合物的溶解性,成功合成了两种溶液加工性能改善的聚合物PDTBDT-TS-DTBT2和PDTBDT-TS-DTFBT2,并且热稳定性没有降低、光学带隙略有增大、能级保持恒定。聚合物太阳能器件结构为ITO/PFN/Polymer:PC61BM/MoO3/Ag。聚合物太阳能电池光活性层PDTBDT-TS-DTBT2:PC61BM=1:1.5共混膜,同时加入3%DIO时,器件的光电转换效率PCE最高为3.47%(其VOC=0.81 V,JSC=6.53 mA/cm2,FF=65.69%)。聚合物太阳能电池光活性层PDTBDT-TS-DTFBT2:PC61BM的质量比为1:1.5,同时加入3%DIO时,器件的光电转换效率PCE最高为4.61%(其VOC=0.88 V,JSC=9.27 mA/cm2,FF=56.48%)。含氟取代的聚合物表现出更为优异的光伏性能和更好的分子平面性,有利于载流子的传输,从而获得高的短路电流,最终获得较高的能量转换效率。其次,将给体单元DTBDT-TS与受体单元DTNTHD通过Stille偶联反应得到聚合物PDTBDT-TS-DTNTHD,该聚合物有良好的成膜加工性能,热分解温度为347℃,在可见光区有较强的吸收,吸收范围从300至800 nm,薄膜状态下的最大吸收峰位于672nm处,光学带隙为1.67 e V。HOMO和LOMO能级分别为-5.35和-3.68 eV。以PDTBDT-TS-DTNTHD:PC61BM共混膜为活性层,加入3%DIO后器件的开路电压和短路电流均增大,获得能量转换效率最高为2.03%(其VOC=0.78 V,JSC=6.80 mA/cm2,FF=38.3%)。再次,将给体单元DTBDT-TS与受体单元TIID通过Stille偶联反应得到聚合物PDTBDT-TS-TIID,该聚合物具有良好的成膜加工性能,热分解温度为344℃。聚合物PDTBDT-TS-TIID的光学带隙仅为1.28 eV,在可见光区内有较强的吸收,吸收范围从300拓展至1000 nm,HOMO和LUMO能级分别为-5.28和-4.00 eV。以PDTBDT-TS-TIID:PC61BM=1:1.5共混膜为活性层,加入3%DIO制备的太阳能器件能量转换效率最高为0.66%(其VOC=0.47 V,JSC=3.13 mA/cm2,FF=44.84%)。
[Abstract]:The active layer material is the core part of the polymer solar cell device. The optimization and improvement of its performance is very important to improve the efficiency of the solar cell device. By optimizing the material in the active layer, the organic light energy battery device with excellent photoelectric performance can be obtained. This paper is in the 5,10 of the DTBDT unit. By introducing an alkyl side chain of thiophene sulfur, a new electron donor unit, DTBDT-TS., was synthesized for the first time by DTBDT-TS and receptor units (2,1,3- benzothiazole /5,6- bis 2,1,3- benzothiazole two azole, naphthalene and [1,2-c:5,6-c'] double [1,2,5] thiothiazoles, thioisoindigo and other derivatives) synthesized by Stille coupling reaction. The D-A type copolymer of narrow band gap is listed, and the thermal stability, absorption spectrum and electrochemical performance of the polymer are characterized. The molecular optimal model of the polymer, the dihedral angle and the HOMO, LUMO energy level orbit are estimated, and the photovoltaic performance of the polymer is preliminarily studied. First, the alkthiophene side chain is introduced to the DTBDT unit and the electricity is prepared. The subunit DTBDT-TS. is used as a conjugate bridge with DTBDT-TS and BT and FBT, 2- butyl octyl thiophene, and two narrow band gap conjugated polymers, PDTBDT-TS-DTBT and PDTBDT-TS-DTFBT., are characterized by Stille coupling. The results show that the conjugated polymer PDTBDT-TS-DTBT and PDTBDT-TS-DTFBT are absorbed to the sun light in the 300-800 nm range and the optical band gap is in the band gap. 1.67 and 1.68 eV, respectively, LUMO is -3.55 and -3.71 eV, respectively, HOMO is -5.22 and -5.39eV., respectively, but it is found that the solubility of the polymer in the common organic solvent is poor in the dissolution test. Therefore, the larger alkyl side chain (2- octyl twelve alkyl) is introduced, and the solubility of the polymer is improved by optimizing the receptor monomer. Two kinds of polymer PDTBDT-TS-DTBT2 and PDTBDT-TS-DTFBT2 were synthesized, and the thermal stability was not reduced, the optical band gap was slightly increased and the energy level kept constant. The structure of the polymer solar device was the PDTBDT-TS-DTBT2:PC61BM=1:1.5 blend film of the photoactive layer of the ITO/PFN/Polymer:PC61BM/MoO3/Ag. polymer solar cell, At the same time, when 3%DIO is added, the photoelectric conversion efficiency of the device is up to 3.47% (its VOC=0.81 V, JSC=6.53 mA/cm2, FF=65.69%). The mass ratio of the photoactive layer PDTBDT-TS-DTFBT2:PC61BM of the polymer solar cell is 1:1.5, and the photoelectric conversion efficiency of the device is higher than 4.61% when the 3%DIO is added. The fluoro substituted polymers show better photovoltaic properties and better molecular planarity, which is beneficial to the transport of carriers, thus obtaining high short-circuit current, and finally obtaining high energy conversion efficiency. Secondly, the polymer PDTBDT-TS-DTNTHD is obtained by coupling reaction of the donor cell DTBDT-TS and the receptor unit DTNTHD, which is the polymer. The compound has good film forming properties, the thermal decomposition temperature is 347 C, the absorption range is stronger in the visible light area, the absorption range is from 300 to 800 nm, the maximum absorption peak in the film state is at 672nm, the optical band gap is 1.67 e V.HOMO and LOMO energy level is -5.35 and -3.68 eV. as the active layer with PDTBDT-TS-DTNTHD:PC61BM blend membrane, adding 3%DIO. The open circuit voltage and short circuit current of the post device all increase, and the maximum energy conversion efficiency is 2.03% (its VOC=0.78 V, JSC=6.80 mA/cm2, FF=38.3%). Again, the polymer PDTBDT-TS-TIID is obtained by Stille coupling reaction between the donor unit DTBDT-TS and the receptor unit TIID. The polymer has a good film forming performance and the thermal decomposition temperature is 344. The optical band gap of the polymer PDTBDT-TS-TIID is only 1.28 eV, which has strong absorption in the visible region, the absorption range is expanded from 300 to 1000 nm, the HOMO and LUMO energy levels are -5.28 and -4.00 eV., respectively, with PDTBDT-TS-TIID:PC61BM=1:1.5 blend membrane as the active layer, and the energy conversion efficiency of the added 3%DIO prepared by 3%DIO is the highest (VOC=0). .47 V, JSC=3.13 mA/cm2, FF=44.84%).
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM914.4

【参考文献】

相关期刊论文 前10条

1 李明娇;郭鹏智;同军锋;;二噻并苯并二噻吩基有机太阳能电池给体材料的研究进展[J];广州化工;2017年04期

2 李婉宁;姚惠峰;侯剑辉;;苯并噻二唑单元在聚合物光伏材料设计中的应用[J];高分子通报;2016年09期

3 王迅昶;周文佩;汪锋;夏养君;;氟原子对苯并二噻吩类共轭聚合物光伏性能的影响[J];广州化工;2016年14期

4 卢梦霞;张涛;王文;凌启淡;;基于萘二酰亚胺受体单元的n-型聚合物受体材料在光电领域的研究进展[J];化学进展;2016年06期

5 宋成杰;王二静;董兵海;王世敏;;非富勒烯类有机小分子受体材料[J];化学进展;2015年12期

6 袁延华;同军锋;;基于苯并二噻吩不同侧链共聚物的合成及光伏性能[J];广州化工;2015年09期

7 方少明;苏济功;王国浩;薛力昆;张永辉;杜俊平;;4,6-2,1,3-苯并噻二唑:一种新的聚合物光电功能材料构筑砌块和多性能调节剂[J];有机化学;2015年07期

8 Shaoqing Zhang;Long Ye;Wenchao Zhao;Bei Yang;Qi Wang;Jianhui Hou;;Realizing over 10% efficiency in polymer solar cell by device optimization[J];Science China Chemistry;2015年02期

9 刘鹏;孙江曼;赵宝锋;黄飞;吴宏滨;陈军武;曹镛;;聚合物光伏材料与器件研究进展[J];中国科学:化学;2013年11期

10 孟祥悦;蒋礼;舒春英;王春儒;;聚合物太阳能电池中富勒烯受体材料研究进展[J];科学通报;2012年36期

相关博士学位论文 前2条

1 党东锋;含噻吩或噻吩稠环单元的有机光伏材料的合成及其性能研究[D];湘潭大学;2015年

2 李昱鹏;CN-PPV体系的光化学与光物理性质研究[D];吉林大学;2008年

相关硕士学位论文 前10条

1 袁延华;三烷基硅乙炔基二噻并苯并二噻吩—共轭聚合物的合成与表征[D];兰州交通大学;2015年

2 李朋;基于异靛蓝及其衍生物的共轭聚合物的合成与性能研究[D];合肥工业大学;2015年

3 李源科;5,,10-二烷基噻吩基二噻并苯并二噻吩聚合物的合成及表征[D];兰州交通大学;2014年

4 付官文;聚合物太阳能电池材料的设计合成与性能研究[D];南昌航空大学;2012年

5 张文庆;高效有机聚合物太阳能电池的制备及性能表征[D];武汉理工大学;2012年

6 吕晶;基于P3HT:PCBM聚合物太阳电池的研究[D];北京交通大学;2011年

7 李政;新型有机电荷传输材料的设计合成及性能研究[D];大连理工大学;2011年

8 孙天兵;P3HT:PCBM聚合物太阳能电池特性研究[D];哈尔滨工业大学;2011年

9 徐军;聚合物太阳能电池材料的设计合成与性能研究[D];南昌航空大学;2011年

10 李彬;用于太阳能电池的窄带隙共轭聚合物的合成与性能研究[D];西北师范大学;2011年



本文编号:2144129

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2144129.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c8e5b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com