大型风电场短期风电功率预测技术研究
[Abstract]:With the rapid growth of the installed capacity of wind power in China, the proportion of wind power in the power network is increasing, and large-scale wind power grid connection brings serious impact on the safe operation of power system. Effective wind farm power prediction can provide reference for power grid stable operation and dispatching. Aiming at the problem of low precision and instability of traditional power prediction in large-scale wind farms, this paper presents an intelligent optimized power prediction model for grouping large wind farms. The specific research contents are as follows: firstly, The parameter characteristics of large scale wind farm are analyzed and regular statistics are made. The characteristics of wind speed and wind direction of large scale wind farm are studied. The relationship between wind speed, wind direction, temperature and generation power is analyzed. The parameter characteristics of large scale wind farm are accurately located. Secondly, aiming at the problem of incomplete and bad points of data collected by large-scale wind farms, the actual power characteristic curve of fan is used to eliminate the data and the correlation coefficient matrix method is used to fill the data. Aiming at the phenomenon of burrs and spikes caused by noise and other factors, a new particle filter is used to filter the wind speed data in the wind field to eliminate the burr of the wind speed and to smooth the data. The processed data is taken as the input data of the prediction model. Then, aiming at the parameter selection of single-machine power prediction model in large-scale wind farm, the parameters of the model are optimized by improved artificial fish swarm algorithm. For the limitation of fixed visual field and step size in fish swarm algorithm, this paper automatically adjusts the visual field and step size of fish herd in foraging and rear-end behavior by adding adaptive adjustment factor. The problem of slow searching speed and easy to fall into local minimum is solved, and the improved algorithm is proved to be effective by different test function experiments. Finally, the power prediction model of wind farm with improved fish swarm optimization support vector machine is established, and the power prediction of two typical wind field fans is studied. Finally, in view of the instability of multi-typhoon prediction in large-scale wind farms and the low precision of traditional forecasting methods, a power prediction strategy of wind farm grouping based on wind speed distribution characteristic sampling and cross-correlation is adopted in this paper. This strategy is combined with improved fish swarm optimization support vector machine to establish the intelligent optimal power prediction model for large wind farm grouping. Two typical wind field examples on land and offshore are simulated to verify the application effect of the prediction model. A set of wind farm power prediction system software is designed, and the proposed method is verified by engineering.
【学位授予单位】:上海电机学院
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM614
【参考文献】
相关期刊论文 前10条
1 柳超;李秀友;黄勇;;优化的多模型粒子滤波机动微弱目标检测前跟踪方法[J];信号处理;2015年09期
2 李琦;李晓航;邢丽萍;邵诚;;基于l_p-范数约束的LSSVR多核学习算法[J];控制与决策;2015年09期
3 高雷阜;高晶;赵世杰;;人工鱼群算法优化SVR的预测模型[J];统计与决策;2015年07期
4 李超;王洪涛;韦仲康;王春义;;含大型风电场的弱同步电网协调控制策略[J];电力自动化设备;2015年04期
5 薛禹胜;郁琛;赵俊华;Kang LI;Xueqin LIU;Qiuwei WU;Guangya YANG;;关于短期及超短期风电功率预测的评述[J];电力系统自动化;2015年06期
6 吕敬;施刚;蔡旭;饶宏;黎小林;;大型风电场经VSC-HVDC交直流并联系统并网的运行控制策略[J];电网技术;2015年03期
7 陈奎;韦晓广;陈景波;牛俊萍;;基于样本数据处理和ADABOOST的小电流接地故障选线[J];中国电机工程学报;2014年34期
8 王栋;;基于动态插值和支持向量机的软测量建模研究[J];自动化与仪器仪表;2014年11期
9 吉鹏飞;齐建东;朱文飞;;改进人工鱼群算法在Hadoop作业调度算法的应用[J];计算机应用研究;2014年12期
10 张文秀;武新芳;陆豪乾;;风电功率预测技术综述与改进建议[J];电力与能源;2014年04期
相关博士学位论文 前7条
1 雷潇;风电机组短期可靠性预测模型与风电场有功功率控制策略研究[D];重庆大学;2014年
2 李家星;医学无创光谱检测中若干关键技术的研究[D];天津大学;2014年
3 李文华;新时期国家能源发展战略问题研究[D];南开大学;2013年
4 史洁;风电场功率超短期预测算法优化研究[D];华北电力大学;2012年
5 静铁岩;大规模风电并网条件下的电力系统有功功率平衡理论研究[D];大连理工大学;2011年
6 王扬;风电短期预测及其并网调度方法研究[D];浙江大学;2011年
7 李晓磊;一种新型的智能优化方法-人工鱼群算法[D];浙江大学;2003年
相关硕士学位论文 前4条
1 管志威;近海风电场短期功率预测技术研究[D];华东理工大学;2014年
2 胡庆有;含大规模风光互补电力的电力系统动态经济调度研究[D];西南交通大学;2013年
3 丁志勇;风电场短期功率预测方法研究[D];华南理工大学;2012年
4 秦云甫;我国风电产业发展问题分析与解决途径[D];华北电力大学;2012年
,本文编号:2146555
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2146555.html