基于大数据的电力系统信息质量评估
[Abstract]:With the increase of the scale of power system, the development of measurement technology and the decrease of cost, the amount of data in power system is increasing rapidly and gradually has the characteristics of big data. Making full use of big data to improve power system planning, operation and control has been paid more and more attention. Therefore, how to evaluate the quality of big data is an important issue worth studying. Many researches have been reported on data quality improvement techniques such as data cleaning, data integration, similar record detection and so on. However, in the evaluation of data quality, the research work is still quite preliminary. Under this background, a comprehensive evaluation method of power big data quality is proposed for the characteristics of power system and power big data quality. For mass evaluation, sometimes the actual distribution of various kinds of quality is very different, so it is more reasonable to adopt the combined evaluation method, so the entropy weight method and the grey class evaluation method are combined together. The power big data quality assessment model is constructed on Hadoop platform, which lists the steps of power big data state evaluation in detail. In this paper, power system data is taken as the main research object, the main problems of power system data quality are expounded, referring to the international standard ISO/IEC 25012, and the quality problems of power system and the characteristics of power big data are discussed. Firstly, the general index of power system data quality evaluation is abstracted, and the index system of power big data quality evaluation is constructed. Aiming at the timeliness of big data processing, MapReduce parallel K-means clustering algorithm is used to realize the fast preprocessing of big data sample set. Then the objective weights of all kinds of data sets in the index system are calculated by using entropy weight method. Finally, the data collected by a power company in a certain city are analyzed by an example, and the grade of data quality is judged by grey evaluation method. On this basis, the comprehensive evaluation of the sample data set is realized. The calculation results show that the proposed method can describe the index system quantitatively through business rules and requirements, and the grey entropy weight comprehensive evaluation method has a good performance in evaluating the quality of big data in terms of time efficiency.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM73
【参考文献】
相关期刊论文 前10条
1 李刚;杨立业;刘福炎;俞敏;宋雨;文福拴;;能源互联网关联数据融合的互信息方法[J];电力建设;2016年09期
2 刘世成;张东霞;朱朝阳;李维东;卢文冰;张敏杰;;能源互联网中大数据技术思考[J];电力系统自动化;2016年08期
3 章元德;史亮;陆巍;张征凯;赵成;裴倩;;线损信息化统计中数据质量管控机制及实现[J];电力系统自动化;2016年07期
4 刘晓悦;郭强;;海量用电数据并行聚类分析[J];辽宁工程技术大学学报(自然科学版);2016年01期
5 高峰;刘广一;Chris Saunders;朱文东;陈振宇;于洋;;智能电网大数据的分析与应用(英文)[J];电力建设;2015年10期
6 李仕琼;;数据挖掘中关联规则挖掘算法的分析研究[J];电子技术与软件工程;2015年04期
7 彭小圣;邓迪元;程时杰;文劲宇;李朝晖;牛林;;面向智能电网应用的电力大数据关键技术[J];中国电机工程学报;2015年03期
8 余本功;汪柳;郭凤艺;;基于灰色模糊层次分析法的企业云服务安全评价模型[J];计算机应用;2014年S2期
9 孙世国;黄志敏;叶尚兴;江友华;;基于分布式光纤的电力电缆检测数据质量优化技术[J];电力建设;2014年09期
10 张道天;严正;韩冬;张娜娜;陈辉;余南华;;采用灰色聚类方法的智能变电站技术先进性评价[J];电网技术;2014年07期
相关硕士学位论文 前3条
1 张依;基于MapReduce的k-means聚类算法并行化研究[D];中央民族大学;2015年
2 张慧娟;异常数据检验的几种方法[D];燕山大学;2012年
3 丛慧刚;基于业务规则的数据中心数据质量研究[D];东北石油大学;2012年
,本文编号:2148551
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2148551.html