锂离子蓄电池组管理系统设计
[Abstract]:Battery charge and discharge control, cell balance management, battery charge state (sOC) estimation and various important control parameters of lithium ion battery are the core work of lithium ion battery management system. Aiming at the core problems of the lithium battery management, this paper mainly studies the following aspects: the final purpose of developing the lithium battery management system is to complete the charge control of the battery. An ideal control method can greatly compress the battery charge time and effectively enhance the working life of the battery to improve its reliability and safety. A battery management system that meets the charging characteristics of lithium ion batteries is essential. The traditional charging management method is single, which can not meet the charging requirement or engineering application of lithium ion battery. In view of this situation, this paper designs a kind of intelligent charging management scheme which can be popularized in engineering. Based on the traditional lithium charging control, a phased control method is proposed. The current charging control mode is determined by the collected battery pack voltage. The charging process includes: precharge area, constant current region, pulse region and constant voltage area, the charging process includes: precharge area, constant current region, pulse region and constant voltage area. Temperature control mechanism is introduced in each charging stage to ensure the safety and lifetime of lithium ion batteries while charging rapidly. Because of the high design cost and low efficiency in the current single cell equalization control mode, a switching LC resonant equalization control circuit is designed in this paper. The LC energy storage element is used as the energy flow carrier in this scheme. Through the control and management of the switching matrix, the electric energy flow among the cells can be achieved, and the final goal of the equalization control of all the cells among the lithium batteries can be realized. Compared with other equalization methods, this method is not only easy to expand, but also more efficient. How to accurately estimate the current residual capacity of the battery pack is a common problem. On the basis of comparing the advantages and disadvantages of various current charge state calculations, a scheme of SOc estimation for lithium-ion batteries combined with experimental method and Peukert ammeter is proposed in this paper. By using the accuracy of the experimental method and the robustness of the ammeter method, this scheme can overcome the problem of real-time accurate estimation of the current residual capacity of the lithium battery pack. As a perceptual source of external information, how to accurately obtain the important control parameters of lithium battery is the premise of the operation of the whole management system. Aiming at the current problem of single cell voltage detection, a single cell detection circuit based on mutual conductance amplification is proposed. The circuit has the advantages of high precision, good temperature drift and high symmetry. In order to solve the difficulty of large-scale integration of lithium electric management system, this paper proposes a modular scheme and designs a modular detection circuit based on this assumption. Based on the idea of modularization in equalization circuit and important parameter acquisition, a centralized distributed lithium ion battery management system is proposed in this paper. The whole management module is divided into main control unit and monitoring unit. The responsibility of the main control unit is to complete the normal operation and control of the whole system, the responsibility of the monitoring unit is to be responsible for the detection of the parameters, and the design of the lithium ion battery management system is realized through the organic combination of the software and the hardware.
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【相似文献】
相关期刊论文 前10条
1 刘兴江,冯婵,谭玲生,汪继强;锂离子蓄电池市场、技术动向与知识产权战略分析[J];电源技术;2005年07期
2 路慧;苏金然;;锂离子蓄电池的市场发展[J];电源技术;2006年07期
3 王福鸾;;索尼公司的锂离子蓄电池先进技术[J];电源技术;2006年10期
4 吴憩棠;;编者的话[J];汽车与配件;2009年26期
5 赵书利;金岑;喻济兵;;锂离子蓄电池技术应用与发展[J];船电技术;2009年12期
6 ;2012年全球锂离子蓄电池市场规模高速增长[J];电源技术;2013年09期
7 张豪娟;美国陆军电台将使用锂离子蓄电池[J];电池工业;1998年06期
8 张凤涛;胡欲立;温杰;唐凡;;锂离子蓄电池温度场仿真分析[J];电源技术;2014年02期
9 吴宇平,万春荣,姜长印,李建军,李阳兴;用溶胶-凝胶法制备锂离子蓄电池材料[J];电源技术;2000年02期
10 汪国杰,周震涛,潘慧铭;聚合物锂离子蓄电池用凝胶聚合物电解质[J];电源技术;2001年01期
相关会议论文 前10条
1 王可;王琛;解晶莹;潘延林;;月面巡视器及着陆器用锂离子蓄电池低温性能研究[A];中国宇航学会深空探测技术专业委员会第六届学术年会暨863计划“深空探测与空间实验技术”重大项目学术研讨会论文集[C];2009年
2 张海鹏;柳玉磊;寻增霞;;矿用锂离子蓄电池安全性能的试验研究[A];煤矿自动化与信息化——第19届全国煤矿自动化与信息化学术会议暨中国矿业大学(北京)百年校庆学术会议论文集[C];2009年
3 张霜华;;论锂离子蓄电池高新材料与锂工业的发展[A];中国有色金属学会第五届学术年会论文集[C];2003年
4 周明中;瞿炜烨;许峰;史源;;锂离子蓄电池深空探测控制技术[A];中国宇航学会深空探测技术专业委员会第八届学术年会论文集(下篇)[C];2011年
5 王琛;潘延林;李克锋;杨聪娇;王颖;钱斌;;LiFePO_4在卫星贮能电源中的应用[A];上海市化学化工学会2006年度学术年会论文摘要集[C];2006年
6 赵煜娟;袁珊珊;李燕;刘欣艳;夏定国;;溶胶-凝胶法合成锂离子蓄电池用正极材料LiFePO_4[A];2005中国储能电池与动力电池及其关键材料学术研讨会论文集[C];2005年
7 张斐秋;;新型绿色电池的发展及在信息通信产业中的应用现状和前景[A];2005'中国通信学会无线及移动通信委员会学术年会论文集[C];2005年
8 王琛;李克锋;任杰伟;潘延林;李国欣;;深空探测用锂离子蓄电池贮能技术研究设想[A];中国宇航学会深空探测技术专业委员会第三届学术会议论文集[C];2006年
9 武巍;王琛;王晓锐;李琳琳;潘延林;;锂离子蓄电池在深空探测中的发展与应用[A];中国宇航学会深空探测技术专业委员会第九届学术年会论文集(中册)[C];2012年
10 胡学山;孙玉恒;林晓静;吁霁;刘兴泉;;锂离子蓄电池正极材料Li_(1+δ)M_xV_(3-x)O_8(M=Ti、Co、Fe、Ni)的合成与电化学性能研究[A];第十二届中国固态离子学学术会议论文集[C];2004年
相关重要报纸文章 前7条
1 云水;力神公司实现锂离子蓄电池产业化[N];中国电子报;2000年
2 柳悦;发展电动自行车 需突破电池瓶颈[N];天津日报;2006年
3 孙传灏;锂离子电池安全成热点 统一标准迫在眉睫[N];中国电子报;2008年
4 易文;锂离子电池安全隐患难除 亟待标准统一[N];电子资讯时报;2008年
5 何德功;日本因何对锂离子蓄电池情有独钟[N];经济参考报;2010年
6 记者 杨亮;中国科学院院士何祚庥:推动电动车绿色发展[N];光明日报;2010年
7 张淑英;小电池孕育大商机[N];云南经济日报;2000年
相关硕士学位论文 前5条
1 刘赫名;空间锂离子蓄电池组均衡管理系统的设计与实现[D];西安电子科技大学;2013年
2 林伟;锂离子蓄电池组管理系统设计[D];华东理工大学;2017年
3 张晓芬;3,5-双(二氰亚甲基)克酮酸锂硼盐系列电解质的合成及性能研究[D];安徽大学;2012年
4 叶翔;空间用锂离子蓄电池正极材料LiFePO_4研究[D];华东理工大学;2011年
5 孟召宝;锂离子蓄电池正极材料LiNi_(0.5)Mn_(0.5)O_2的制备和电化学性质研究[D];东北师范大学;2009年
,本文编号:2166611
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2166611.html