基于智能优化算法的热工大惯性对象模型辨识研究
[Abstract]:The model identification of large inertia object is the basis of studying the thermal control problem. Determining the structure and parameters of the model is an important part of the design, debugging and commissioning of the control system. After the object model is determined or identified, the actual control system can be optimized for parameters, which can effectively improve the quality and efficiency of the control system and ensure the safety of the production process. In this paper, based on the model identification technology and pid parameter optimization technology, based on the actual operation data of typical large inertia thermal engineering object, the improved particle swarm optimization algorithm is used to identify the thermal object. The main factors affecting the system identification results and the problems that should be paid attention to in the identification process are analyzed. The parameters of the PID controller are optimized by using the identification results. The model identification of thermal objects using PSO algorithm has the advantages of high speed, flexibility and convenience. However, PSO algorithm is easy to fall into local optimal solution, easy to prematurity and low searching precision. Therefore, it is necessary to study the method of improving and improving the algorithm based on PSO algorithm. Firstly, chaotic search and simulated annealing are introduced into PSO, which makes the algorithm have better diversity and the ability to jump out of the local optimum. Secondly, combined with bacterial chemotaxis algorithm, repulsive operation is introduced to enhance the searching ability of particles. The improved algorithm is verified by the typical function, and the convergence, stability and global search ability of the algorithm are obviously improved. Based on the understanding of the structure of the thermal model, the improved particle swarm optimization algorithm is applied to the model identification of the temperature object of the laboratory boiler and the main steam temperature object of the supercritical boiler with multiple input and single output. The identification results of several improved algorithms are analyzed and compared. The results show that the bacterial chemoattractant particle swarm optimization algorithm has better adaptability and more accurate identification model for different thermal control systems.
【学位授予单位】:上海电力学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM621
【参考文献】
相关期刊论文 前10条
1 卢晓玲;马平;;基于粒子群算法的超临界机组给水系统模型辨识[J];华电技术;2015年01期
2 侯晓宁;孙海蓉;;基于现场数据和PSO算法的机组主汽温系统辨识[J];计算机仿真;2014年12期
3 韦根原;赵鹏旭;韩璞;;基于混沌粒子群算法的火电机组热工过程辨识方法[J];热力发电;2014年10期
4 薛晓岑;向文国;吕剑虹;;基于差分进化与RBF神经网络的热工过程辨识[J];东南大学学报(自然科学版);2014年04期
5 杨伟新;张晓森;;粒子群优化算法综述[J];甘肃科技;2012年05期
6 刘长平;叶春明;;基于逻辑自映射的变尺度混沌粒子群优化算法[J];计算机应用研究;2011年08期
7 赵志刚;常成;;自适应混沌粒子群优化算法[J];计算机工程;2011年15期
8 李岩;王东风;焦嵩鸣;韩璞;;采用微分进化算法和径向基函数神经网络的热工过程模型辨识[J];中国电机工程学报;2010年08期
9 田东平;;基于Tent混沌序列的粒子群优化算法[J];计算机工程;2010年04期
10 李攀峰;杨晨;;基于径向基函数神经网络的热工过程模型辨识[J];重庆大学学报;2009年09期
相关博士学位论文 前1条
1 孙剑;大型循环流化床锅炉燃烧系统特性与建模研究[D];华北电力大学(北京);2010年
相关硕士学位论文 前10条
1 彭岱;细菌觅食优化算法研究及其应用[D];沈阳理工大学;2015年
2 朱波;蚁群算法在1000MW火电机组模型辨识中的应用[D];华北电力大学;2014年
3 马磊;粒子群算法在1000MW火电机组模型辨识中的应用[D];华北电力大学;2014年
4 黄金山;基于和声搜索算法的主汽温控制系统的建模与优化[D];华北电力大学;2014年
5 谢秀华;基于改进粒子群优化算法的聚类算法研究[D];广西大学;2013年
6 丁满;大型火电机组建模与验模方法的研究[D];华北电力大学;2013年
7 袁世通;1000MW超超临界机组燃烧系统建模研究[D];华北电力大学;2011年
8 时乐;基于遗传算法的热工过程辨识[D];华北电力大学(河北);2009年
9 高磊;室温PID控制实验系统的研究[D];天津大学;2008年
10 李欣欣;具有分工特征的蚁群算法及其在热工控制系统中的应用[D];华北电力大学(北京);2008年
,本文编号:2183032
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2183032.html