当前位置:主页 > 科技论文 > 电气论文 >

基于压电效应的振动能量采集电路研究

发布时间:2018-11-03 12:59
【摘要】:随着微小型设备和传感器的飞速发展,振动能量采集技术越来越受到人们的关注。振动能量采集技术能够广泛应用于人们生产和生活之中,以克服传统电池的更换困难和寿命有限等问题,并且振动能比其他新型能源采集效率更高,对于高空、高危、腐蚀环境下的微型机电设备供能问题,具有很好的应用前景。本文研究的内容有:首先介绍了压电材料能量采集的应用和基于压电元件的采集电路的国内外研究现状,以及压电元件能量采集的特点;其次,从压电方程出发,探究了压电悬臂梁振动产生应变、输出电荷及电压的基本原理,讨论了用于能量采集的压电悬臂梁等效电路模型;然后,对接口电路进行了分析、改进与设计,研究了一种并联双同步开关能量采集电路(P-DSSH),对电路进行了仿真和理论分析、及电子元器件的选型,搭建了能量采集电路,确定了悬臂梁结构压电振动能量采集方案。最后,搭建了压电能量采集电路研究的实验平台,对本文设计的P-DSSH电路和几种常见接口电路分别进行了实验测试,记录了波形和数据,进行了对比研究。实验结果表明:振动加速度arms为0.035m/s2时,P-DSSH电路的瞬时输出功率为0.25mW,比并联同步开关电感接口电路(P-SSHI)、全桥整流接口电路(SEH)和LTC3588-1电路的输出功率高很多,并且输出功率不随负载变化而变化。同时改变压电悬臂梁的固有频率进行了对比实验,在振动加速度恒定不变的情况下,压电梁放置质量块后,测得压电梁的固有频率变小了,由38.4Hz变为了29.3Hz,同时,梁产生的机械应力变大、粘贴在根部的压电片变形量增大。在此条件下进行试验,实验结果表明:相比梁的固有频率变低之前的实验,虽然P-SSHI电路和SEH电路的输出功率,LTC3588-1电路,P-DSSH电路的采集功率都有所增大,但是P-DSSH电路的瞬时输出功率为0.264mW,输出功率仍然比上述接口电路都要高,并且输出功率不随负载变化而变化。实验证明,本文设计的P-DSSH电路提高了压电振动能量采集系统的输出功率、也解决了采集效率受负载变化影响的问题。P-DSSH电路稳定输出3.6V电压,实现了1W小灯断续工作,可以用于低功率的断续工作的微型传感器供能。
[Abstract]:With the rapid development of micro devices and sensors, vibration energy acquisition technology has attracted more and more attention. Vibration energy acquisition technology can be widely used in the production and life of people to overcome the difficulties of replacement of traditional batteries and limited life, and vibration energy collection efficiency is higher than other new energy sources, for high altitude, high risk. The problem of energy supply for micro-electromechanical equipment in corrosive environment has a good application prospect. The main contents of this paper are as follows: firstly, the application of piezoelectric material energy acquisition and the research status of piezoelectric element based acquisition circuit at home and abroad, as well as the characteristics of piezoelectric element energy acquisition are introduced. Secondly, based on the piezoelectric equation, the basic principle of the vibration strain, the output charge and the voltage of the piezoelectric cantilever beam is discussed, and the equivalent circuit model of the piezoelectric cantilever beam used for energy acquisition is discussed. Then, the interface circuit is analyzed, improved and designed, and a parallel dual-synchronous switch energy acquisition circuit (P-DSSH) is studied. The circuit is simulated and theoretically analyzed, and the electronic components are selected. The energy acquisition circuit is built, and the piezoelectric vibration energy acquisition scheme of cantilever structure is determined. Finally, the experimental platform of piezoelectric energy acquisition circuit is built. The P-DSSH circuit and several common interface circuits designed in this paper are tested, the waveform and data are recorded and compared. The experimental results show that the instantaneous output power of the P-DSSH circuit is 0.25 MW when the vibration acceleration arms is 0.035m/s2, which is higher than that of the parallel synchronous switch inductance interface circuit (P-SSHI). The output power of full-bridge rectifier interface circuit (SEH) and LTC3588-1 is much higher, and the output power does not change with the load. At the same time, the natural frequency of piezoelectric cantilever beam is changed and compared. When the vibration acceleration is constant, the natural frequency of piezoelectric beam becomes smaller, from 38.4Hz to 29.3 Hz, when the mass block of piezoelectric beam is kept constant. The mechanical stress of the beam increases and the deformation of the piezoelectric plate attached to the root increases. The experimental results show that the output power of P-SSHI circuit and SEH circuit, the acquisition power of LTC3588-1 circuit and P-DSSH circuit are increased, compared with the experiment before the natural frequency of beam becomes lower. However, the instantaneous output power of the P-DSSH circuit is 0.264 MW, and the output power is still higher than that of the interface circuits mentioned above, and the output power does not change with the load. Experimental results show that the P-DSSH circuit designed in this paper improves the output power of the piezoelectric vibration energy acquisition system and solves the problem that the collection efficiency is affected by the load variation. The 1W small lamp can be used in the low power intermittent operation of the micro sensor.
【学位授予单位】:石河子大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM619

【参考文献】

相关期刊论文 前10条

1 朱莉娅;郑梅;陈仁文;;一种无源同步开关压电能量收集电路研究[J];电子元件与材料;2016年04期

2 王玉霞;季宏丽;裘进浩;尹慧慧;;一种新型自供电式压电能量回收接口电路[J];电子元件与材料;2014年05期

3 孙子文;沈星;陈金金;;自供能压电振动能量回收接口电路优化设计[J];压电与声光;2013年04期

4 赵兴强;温志渝;;基于压电材料的振动能量收集器的谐振频率调节[J];压电与声光;2013年02期

5 关新春;刘彦昌;李惠;欧进萍;;1-3型水泥基压电复合材料的制备与性能研究[J];防灾减灾工程学报;2010年S1期

6 何超;陈文革;;压电材料的制备应用及其研究现状[J];功能材料;2010年S1期

7 任思源;何青;;基于压电材料的振动能量收集试验研究[J];现代电力;2010年03期

8 季宏丽;裘进浩;赵永春;朱孔军;;基于TMS320F2812的悬臂梁振动半主动控制[J];光学精密工程;2009年01期

9 杜冬梅;何青;张志;;无线传感器网络能量收集技术分析[J];微纳电子技术;2007年Z1期

10 程光明;庞建志;唐可洪;杨志刚;曾平;阚君武;;压电陶瓷发电能力测试系统的研制[J];吉林大学学报(工学版);2007年02期

相关硕士学位论文 前8条

1 曹昆;基于压电材料的振动能量采集系统研究[D];南京邮电大学;2014年

2 霍晓青;悬臂型压电能量采集器固有频率和能量输出特性研究[D];哈尔滨工业大学;2010年

3 邵明乾;压电俘能器遥控电子锁的设计[D];武汉理工大学;2010年

4 宁玉怀;压电发电的能量转换及存储技术研究[D];中南大学;2010年

5 王强;基于压电材料的振动能量采集技术的研究[D];江苏大学;2008年

6 贾杰;压电发电装置的能量转换及存储特性研究[D];吉林大学;2008年

7 龚立娇;基于压电材料的能量采集研究[D];南京航空航天大学;2008年

8 刘艳涛;压电自供电型无线发射装置研究[D];吉林大学;2006年



本文编号:2307859

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2307859.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户23982***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com