基于神经网络的电厂锅炉故障诊断研究
[Abstract]:With the rapid development of power industry, the application of large power plant boilers is becoming more and more extensive, the structure of boiler system is more complex, and the operation parameters are more and more, and the application of fault diagnosis technology is becoming more and more urgent. Among many fault diagnosis technologies, neural network-based fault diagnosis technology is widely used in power plant system fault diagnosis research because of its strong learning ability, good fault tolerance, fast and convenient, and the ability to deal with complex nonlinear relationships. In the fault diagnosis method based on neural network, the identification and classification of fault features is one of the key steps to affect the safety, reliability and efficiency of fault diagnosis system. Therefore, it is very important to study the accuracy of fault feature identification and classification. In this paper, the fault feature rule is difficult to summarize, the feature knowledge is difficult to be extracted, and the characteristic parameters change quickly when the power plant screen superheater is leaking. In order to overcome the shortcomings of traditional single boiler fault diagnosis method and manual monitoring fault diagnosis, a wavelet neural network fault diagnosis model is designed. The particle swarm optimization (PSO) algorithm is proposed to optimize the network model training parameters. The simulation results of MATLAB show that the fault diagnosis model based on particle swarm optimization wavelet neural network is superior to other algorithms in accuracy and training time. In addition, a probabilistic neural network fault diagnosis model is designed and improved by particle swarm optimization (PSO). An adaptive probabilistic neural network fault diagnosis model is formed and the effectiveness of the improved algorithm is verified by MATLAB simulation. Finally, the configuration monitoring system of power plant fault diagnosis system is designed by using Kingview software, and the data communication between MATLAB and Kingview is established by using OPC technology, and the fault monitoring under MATLAB environment is realized.
【学位授予单位】:河北科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM621.2
【参考文献】
相关期刊论文 前10条
1 孙雷;;锅炉水冷壁泄露原因与防范措施分析[J];科技展望;2015年30期
2 解文强;王侠;;火电厂锅炉运行故障诊断分析[J];河南科技;2015年19期
3 樊帅;肖军;;锅炉制粉系统故障诊断方法[J];热力发电;2015年02期
4 孙晓丹;;锅炉故障原因分析及处理方法[J];科技致富向导;2015年06期
5 黄中;潘贵涛;张品高;肖平;孙献斌;;300MW大型循环流化床锅炉运行分析与发展建议[J];锅炉技术;2014年06期
6 马国军;;现代电厂锅炉原理及设备问题[J];中外企业家;2014年33期
7 李凡;;电厂锅炉泄漏原因及其应对措施探讨[J];科技致富向导;2014年30期
8 白顺义;郑锋;;火电厂大型锅炉常见故障分析与处理[J];山东工业技术;2014年19期
9 李鹏飞;赵明;赛俊聪;丁常富;;300 MW循环流化床锅炉动态特性的试验研究[J];热能动力工程;2014年05期
10 高倩;刘乃江;刘寅;刘景新;赵斌;;煤粉锅炉爆管故障诊断案例分析[J];节能;2014年09期
相关博士学位论文 前2条
1 王洪江;电站锅炉实时故障诊断研究[D];华北电力大学(北京);2008年
2 董学育;基于人工神经网络的故障诊断方法在电站中的应用研究[D];东南大学;2001年
相关硕士学位论文 前10条
1 周沙;基于概率神经网络的变压器局部放电模式识别研究[D];江苏大学;2016年
2 董沛钊;基于神经网络的高炉风机运行状况预测的研究[D];河北科技大学;2015年
3 吕雪冬;基于粒子群优化BP神经网络在电站锅炉中的应用研究[D];安徽大学;2015年
4 刘乃江;电站锅炉热管失效诊断与状态检验研究[D];华北理工大学;2015年
5 田立;基于鱼群优化概率神经网络算法的研究[D];辽宁大学;2014年
6 张碧夏;基于PSO的小波神经网络热连轧板材质量模型研究[D];山西师范大学;2014年
7 惠万春;基于粒子群小波神经网络的网络流量预测模型研究[D];西安电子科技大学;2014年
8 汪宁姝;锅炉四管泄漏故障的仿真研究与智能诊断[D];华北电力大学;2014年
9 翟文杰;基于贝叶斯网络的锅炉故障诊断系统的设计与实现[D];电子科技大学;2013年
10 罗超;基于多智能体的高炉故障诊断方法研究[D];东北大学;2013年
,本文编号:2308094
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2308094.html