基于K值法的单相四柱式特高压变压器的GIC-Q损耗计算
[Abstract]:To master the reactive power (GIC-Q) disturbance derived from GIC infringing transformers is the basis of analyzing the influence of DC bias of transformer GIC and formulating the disaster prevention strategy of geomagnetic storm power network. In view of the single-phase four-column UHV transformer used in 1000kV UHV power network, from the point of view of engineering disaster prevention, the GIC-Q disturbance of UHV main transformer based on K-value algorithm is studied in this paper. The research contents and main conclusions are as follows: (1) the structure and characteristics of the core structure, winding arrangement and voltage regulation compensation of the single-phase four-column UHV transformer designed and manufactured by our country are discussed. The formation mechanism, physical mechanism and influencing factors of GIC-Q loss of single phase four-column transformer are analyzed. The results show that the UHV transformer will occur half-wave saturation, excitation current distortion and increase of reactive power loss under the action of quasi-DC GIC. And the increase of reactive power loss is related to the core structure, operating voltage grade, dynamic inductance, leakage reluctance and other factors. (2) according to the structural parameters and core parameters of UHV transformer, The magnetic circuit-circuit coupling model of 1000kV single-phase four-column UHV main body variable is established. The excitation characteristics and reactive power loss of the transformer are studied. The results show that with the increasing of GIC, the saturation degree of the main variable half-wave is deepening, the distortion of the excitation current is increasing, and the increasing rate of the harmonic is different, combined with the reactive power calculation method. It is obtained that the GIC-Q loss of the main variable is linear with that of the GIC, and the ratio coefficient K of the single-phase four-column main variable is determined to be 2.44. The calculation error is compared to meet the requirements of engineering calculation. (3) the reactive power loss of GIC of different types of transformers is compared and analyzed. The results show that in a certain range, with the increase of GIC, the reactive power loss of GIC with 1000kV single-phase four-column UHV main variable is higher than that of ordinary transformer. Under the same GIC size, the GIC-Q loss of single-phase four-column UHV main variable is higher than that of ordinary single-phase transformer. Therefore, geomagnetic storms in UHV power grids are more likely to cause large GIC-Q fluctuations, which is the focus of the research on geomagnetic storm disaster prevention.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM41
【参考文献】
相关期刊论文 前10条
1 刘鹏;郭倩雯;杨铭;李正天;林湘宁;全江涛;;抗直流偏磁的变压器中性点接地方式探讨[J];高电压技术;2015年03期
2 刘连光;郭世晓;魏恺;郑宽;;基于全节点模型的三华电网地磁感应电流计算[J];电网技术;2014年07期
3 潘超;王梦纯;蔡国伟;姜言金;李铁峰;;变压器直流偏磁场路耦合计算中的磁化曲线拟合[J];电力自动化设备;2014年04期
4 郑宽;刘连光;David H.Boteler;Risto J.Pirjola;;多电压等级电网的GIC-Benchmark建模方法[J];中国电机工程学报;2013年16期
5 潘超;王泽忠;李海龙;刘连光;张科;郭若颖;;基于瞬态场路耦合模型的变压器直流偏磁计算[J];电工技术学报;2013年05期
6 张龙伟;吴广宁;范建斌;曹晓斌;黄渤;;基于Jiles-Atherton磁滞理论三相三柱变压器直流偏磁的电磁混合模型[J];华东电力;2013年04期
7 潘超;王泽忠;杨敬t@;刘连光;;变压器直流偏磁瞬态场路耦合计算的稳定性分析[J];电工技术学报;2012年12期
8 王泽忠;潘超;周盛;刘连光;;基于棱边有限元的变压器场路耦合瞬态模型[J];电工技术学报;2012年09期
9 赵小军;李琳;程志光;鲁君伟;卢铁兵;刘兰荣;范亚娜;;基于直流偏磁实验的叠片铁心磁化特性分析[J];电工技术学报;2011年01期
10 黄晶晶;徐习东;曾平;马丰华;;电力变压器铁心的非线性磁化特性[J];高电压技术;2010年10期
相关博士学位论文 前3条
1 潘超;基于时域场路耦合模型的变压器直流偏磁电磁特性研究[D];华北电力大学;2013年
2 张冰;大型电力变压器的GIC影响效应研究[D];华北电力大学(北京);2010年
3 刘春明;中低纬电网地磁感应电流及其评估方法研究[D];华北电力大学(北京);2009年
相关硕士学位论文 前2条
1 秦晓培;基于变压器V-I曲线的GIC无功损耗模型与算法研究[D];华北电力大学;2015年
2 李贞;直流偏磁条件下电力变压器的磁化机制与建模方法研究[D];山东大学;2011年
,本文编号:2308068
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2308068.html