添加剂对甲基磺酸铅液流电池负极枝晶形态影响的研究
[Abstract]:It is the core means to optimize the energy structure, relieve the grid pressure and improve the power quality by combining the wind with the energy storage system with intermittent and unstable wind. Lead methanesulfonate flow battery is considered to be a power plant energy storage system with long life cycle and megawatt capacity due to its simple structure, low cost, strong weathering resistance and easy regeneration cycle. However, in the charging process of lead methanesulfonate battery, soluble Pb2 is preferentially deposited in the negative electrode in dendritic form, which can lead to the short circuit of the positive and negative electrode of the battery, which seriously affects the storage efficiency and service life of the battery. In this paper, 1.0mol/LH and 0.7mol/LPb2 were used as electrolyte, and metal ion additive (Sn2) was added to the electrolyte. The organic additive decyl trimethyl ammonium hydroxide (HDTAH) was used to inhibit the growth of negative dendrite and improve the cycle performance of the battery. The cyclic voltammetry (CV),) chronoamperometric method (CA),) was used to test the battery with LAND power battery test system. Linear scanning (LSV) and other electrochemical methods combined with scanning electron microscope (SEM), X ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and other surface detection methods are used to study the inhibition mechanism of additives on negative dendrite and its influence on storage efficiency and cycle life. The results are as follows: 1. The electrolyte additive is metal ion Sn2, and when the concentration of 0.8mmol/L~1.Ommol/L is added, the lead deposition in the negative electrode of the battery is relatively smooth, and the lead particles are compact and compact, and the average discharge capacity of the battery is increased. The mechanism of inhibition of negative dendritic morphology by Sn2 additive in electrolyte: 1) promoting the electrodeposition of lead, improving the reversibility of Pb/Pb2 pair and the diffusion coefficient of Pb2 on the electrode surface; 2) changing the electrocrystallization mode of lead from "three dimensional instantaneous nucleation" to "three dimensional continuous nucleation", so as to increase the nucleation density of lead; 3) PbSn solid solution was formed by co-deposition of lead and tin, which inhibited the dendritic morphology of negative lead. The addition of Sn2 in electrolyte increases the average Coulomb efficiency of the battery to about 90 and the average energy efficiency to 86.4. The optimum addition amount of 216%.Sn2 for increasing the life of the battery is 0.8 mmol / L. Secondly, when the concentration of electrolyte additive HDTAH, is 1.5mmol/L~2.5mmol/L, the dendrite morphology of the negative electrode of the battery is changed, which makes the deposition of lead in the negative electrode more smooth and dense, thus increasing the discharge capacity. The effect of adding HDTAH into electrolyte is as follows: 1) adsorbing on the electrode surface to improve cathode polarization of the battery, and 2) inhibiting the electrodeposition of lead on the surface of negative electrode, but improving the reversibility of Pb/Pb2; (3) HDTAH adsorbed on lead grain growth point to change the growth direction of lead, 4) lead was deposited on negative electrode in "three dimensional instantaneous nucleation" mode, thus increasing the nucleation density of lead, but decreasing the diffusion coefficient of Pb2 on the electrode surface; (5) the charge and discharge efficiency of the battery is increased to 89, and the average energy efficiency is about 80. The optimum addition amount of 190%.HDTAH additive is 2.5 mmol / L.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【参考文献】
相关期刊论文 前10条
1 白建华;辛颂旭;刘俊;郑宽;;中国实现高比例可再生能源发展路径研究[J];中国电机工程学报;2015年14期
2 辛化;;世界能源已经进入无碳化第三次能源变革时代[J];广西电业;2015年05期
3 金荣荣;马立群;尹东明;王立民;;铈锌液流电池的研究进展[J];应用化学;2013年08期
4 陈涛;宋友桂;曾蒙秀;李新新;;影响XRD衍射谱形态的实验条件分析[J];地球环境学报;2013年02期
5 孟琳;;锌液流电池储能技术研究和应用进展[J];储能科学与技术;2013年01期
6 肖育江;晏明;;基于锌溴液流电池的储能技术[J];东方电机;2012年05期
7 张华民;;储能与液流电池技术[J];储能科学与技术;2012年01期
8 刘旭东;毕孝国;牛微;;全沉积型铅酸液流电池电极材料研究进展[J];电源技术;2012年05期
9 郎俊山;付强;;二次碱性电池锌电极的研究进展[J];船电技术;2010年07期
10 ;清洁能源发展与中国的能源战略——“首届中美清洁能源务实合作论坛”综述[J];中国能源;2009年12期
相关会议论文 前1条
1 鄂宝民;黄旭;庞立军;陈昀;支伟;;先进储能技术在环渤海风电发展中的应用前景分析[A];第十三届中国科协年会第15分会场-大规模储能技术的发展与应用研讨会论文集[C];2011年
相关博士学位论文 前1条
1 张丽霞;动力蓄电池组测试系统变流技术研究[D];华北电力大学(河北);2008年
相关硕士学位论文 前8条
1 王少洁;蓄电池负极添加剂电化学行为研究[D];山西师范大学;2015年
2 伏广好;Sn-Ag-Cu共沉积中有机添加剂的研究[D];长春工业大学;2014年
3 李雯雯;全钒液流电池电极材料的改性及其电催化性能研究[D];浙江工业大学;2014年
4 谭龙辉;Ce(Ⅳ)/Ce(Ⅲ)作为氧化还原电池正极的研究[D];中南大学;2010年
5 夏文;质子交换膜燃料电池动态模型与控制研究[D];南京理工大学;2010年
6 李娜;敏感水凝胶用于重金属离子的吸附及利用[D];安徽大学;2010年
7 钟琴;添加剂MPS、PEG、Cl~-对铜电沉积的影响研究[D];重庆大学;2010年
8 王丽丽;油田污水回用采暖锅炉软化工艺技术研究[D];中国石油大学;2008年
,本文编号:2320926
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2320926.html