Sn基复合纳米碳纤维制备及其储能功能研究
[Abstract]:The new functional fiber is developed and applied, and the new space in the research field of dyeing and finishing function is developed, so that the dyeing and finishing technology is no longer limited to the daily administration function. With the continuous development of the consumer Li-ion battery, the technology of dyeing and finishing function finishing technology is applied to the preparation and design of the energy-storage functional fiber, and the market demand is being met. In this paper, based on the development of the new thought of dyeing and finishing technology, the energy storage of Sn-based composite nano-carbon fiber is given by combining the energy storage characteristics of the tin (Sn)-based material and the high electrical conductivity of the nano-carbon fiber (CNFs). The composition, morphology and structure of the Sn-based composite nano-carbon fiber were designed by internal modification and external protection for the volume effect of the Sn-based material, so as to improve the cycle performance. The relationship between the composition, structure and energy storage function of Sn-based composite nano-carbon fiber prepared by different methods was analyzed, and its energy storage mechanism was discussed. In the first chapter, the research background and working principle of the Li-ion battery are introduced in the first chapter, then the types and characteristics of the negative materials are briefly described, and then the research status and the existing problems of the Sn-based negative material are emphatically discussed, and the research significance and the working contents of this paper are put forward. In the second chapter, Sn-based composite porous nano-carbon fiber (Sn-PCNFs) was prepared by using Sn salt as the precursor of simple substance Sn and blending with PAN. The metal Sn is superuniformly dispersed in CNFs in a non-constant form, and the partial overflow is agglomerated into Sn-based large particles and exposed on the surface of the CNFs. The results show that the cycle life and stability of Sn-PCNFs need to be improved because the Sn-PCNFs are cycled 200 times under a large current density of 0.8 A g ~ (-1), and the high specific capacity of 774 mA h g ~ (-1) can be maintained. In the third chapter, the Sn-Cu precursor and the CNFs matrix (Sn-Cu-CNFs) were prepared by a step of carbonization-alloying by using the second exposed Sn-based large particles as the starting point, using the precursor of Sn and Cu and the complex reaction of the PAN to disperse the Sn-Cu precursor. The control temperature is 700oC, so that the inert Cu3Sn and the active Cu6Sn5 can coexist in the Sn-based large particles, and the cycle performance of the Sn-based composite nano carbon fiber is remarkably improved. The results show that Sn-Cu-CNFs can be cycled for 1200 times at a large current density of 1. 0 A g ~ (-1), with a specific capacity of 400 mA h g ~ (-1), and the coulomb efficiency is 99%. Compared with Sn-PCNFs, the cycle life of Sn-Cu-CNFs is greatly improved. In chapter 4, in order to protect the exposed Sn-based large particles of the second chapter, the carbon-coated Sn-based composite nano-carbon fiber (Sn-SnO_2-CNF@C) was prepared by using the low-temperature water heat method as the carbon source, and the carbon-coated carbon layer structure can be obtained by controlling the concentration of the sucrose. The results of the electrochemical test show that the Sn-SnO_2-CNF@C2 is 200 times under the current density of 0.8 A g ~ (-1), the capacity is 71.2 mA h g ~ (-1), and compared with the Sn-PCNFs, the Sn-SnO_2-CNF@C2 has better cycle stability and multiplying power performance. In the fifth chapter, the nano-carbon fiber (UV20-CNFs) and the Sn-based nano-carbon fiber (UV20-Sn-CNFs) were micro-oxidized by excimer UV irradiation, so that the oxygen-containing functional group was generated on the surface of the fiber, which not only is beneficial to the improvement of the reaction kinetics, and the solid electrolyte interface (SEI) film formed in the circulation process is stably anchored on the fiber, and the cycle stability is improved; meanwhile, the porous structure is formed on the surface of the fiber, and the physical lithium storage amount is increased. The results show that the discharge ratio of UV20-Sn-CNFs is 200 times under the current density of 0.5 A g ~ (-1), the discharge specific capacity is 733 mA h g ~ (-1), the coulomb efficiency is 99%, the number of cycles can be up to 1000 times under the large current density of 2.0 A g ~ (-1), and the capacity of the UV20-CNFs is 300 mA h g ~ (-1), and the coulomb efficiency is 98%. The excimer ultraviolet micro-oxidation technology is simple and feasible, and has potential commercial prospect. Finally, in the sixth chapter, the system summarizes the research results of this paper, points out the deficiency in the research work, and puts forward the future development direction and suggestion.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【相似文献】
相关期刊论文 前10条
1 曹何芬;新加坡在世界上首次合成纳米碳墙[J];建设科技;2002年03期
2 蒲天游;纳米碳对酚醛树脂碳微结构的影响[J];现代科学仪器;2003年03期
3 卫英慧;侯利锋;林丽霞;刘雯;许并社;市野濑英喜;;纳米碳洋葱的研究进展[J];兵器材料科学与工程;2007年06期
4 杨晶;史立飞;王禹;罗文满;李庚英;熊光晶;;分散剂对纳米碳黑水泥砂浆性能的影响[J];新型建筑材料;2012年01期
5 马柯;崔晓钰;邓高飞;;纳米碳球涂料对散热器散热性能的影响[J];热科学与技术;2013年03期
6 邓文,钟夏平,熊良钺,刘起秀,,龙期威;纳米碳中的微观缺陷结构特征[J];核技术;1998年02期
7 韩德艳;谢长生;;纳米碳包铁的吸附性能研究[J];黄石理工学院学报;2006年03期
8 杨薇炯;纳米碳基膜场发射显示技术的研究进展[J];新材料产业;2005年09期
9 杨学军,丘哲明,胡良全;纳米碳黑对酚醛树脂力学性能的影响[J];宇航材料工艺;2003年04期
10 邵建人;纳米碳防腐导电涂料问世[J];内蒙古电力技术;2003年05期
相关会议论文 前10条
1 孔春才;孙少东;杨志懋;;水下电弧法制备纳米碳片[A];第七届中国功能材料及其应用学术会议论文集(第3分册)[C];2010年
2 薛靖华;韩敏芳;王增峰;;白云石制备纳米碳酸钙和纳米碳酸镁概述[A];第八届全国非金属矿加工利用技术交流会论文专辑[C];2004年
3 郭巍;安胜利;;纳米碳催化剂对铝碳耐火材料抗氧化性能的影响[A];第二届全国背散射电子衍射(EBSD)技术及其应用学术会议暨第六届全国材料科学与图像科技学术会议论文集[C];2007年
4 郁军;许并社;杨永珍;张艳;刘旭光;;热处理脱油沥青制备内包金属纳米碳洋葱[A];第九次全国热处理大会论文集(二)[C];2007年
5 陈名海;陈宏源;靳瑜;邢亚娟;田靖;勇振中;李清文;;功能纳米碳纸结构性能调制及其应用[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
6 吴翔;刘广安;孟国军;;纳米碳电学性能研究及其在电发热膜中的应用[A];2004年中国纳米技术应用研讨会论文集[C];2004年
7 程若川;;纳米碳示踪在甲状腺手术中的应用[A];2014第六届全国甲状腺肿瘤学术大会论文集[C];2014年
8 李红霞;李晓明;杨泽垠;陈旭珍;陈坤;;甲状腺手术中应用纳米碳的益处[A];2014第六届全国甲状腺肿瘤学术大会论文集[C];2014年
9 胡良全;张炜;卢嘉德;;纳米碳增强碳/酚醛材料的微观结构研究[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年
10 魏先文;徐静;宋小杰;;纳米碳管基复合材料的合成及性能研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
相关重要报纸文章 前8条
1 杨彦飞 王晓霞;潞城建成全国最大纳米碳生产示范基地[N];山西日报;2012年
2 李斌 王晓霞;潞城建成纳米碳生产示范基地[N];长治日报;2012年
3 本报记者 原腊苗;用高科技开辟化肥全新领域[N];长治日报;2011年
4 ;纳米碳防腐导电涂料项目通过鉴定[N];中国高新技术产业导报;2005年
5 邵建人;纳米碳防腐导电涂料问世[N];中国化工报;2003年
6 通讯员 黄敬华 熊晶晶;襄樊东一公司纳米碳液通过鉴定[N];科技日报;2002年
7 记者 张海霞;加大推广研发力度把企业做强做大[N];长治日报;2012年
8 本报记者 闫婷婷;晟龙公司碳光玻璃引领行业发展潮流[N];长治日报;2013年
相关博士学位论文 前6条
1 邓建辉;荧光纳米碳点的电化学制备及其在生化分析中的应用[D];湖南师范大学;2015年
2 薛芳沁;纳米碳淋巴示踪剂在胃肠肿瘤手术中的应用研究[D];南方医科大学;2016年
3 孔华庭;纳米碳黑—金属复合物的联合呼吸毒性研究[D];中国科学院研究生院(上海应用物理研究所);2017年
4 徐海涛;微纳米碳铁复合材料的制备与表征[D];中国科学院研究生院(理化技术研究所);2009年
5 李军章;纳米碳酸盐的制备及其化学反应行为的研究[D];河北工业大学;2013年
6 荣常如;聚芳醚/纳米碳复合材料的制备及性能研究[D];吉林大学;2010年
相关硕士学位论文 前10条
1 付凯;术中不同方法保护甲状旁腺的比较及临床意义[D];河北医科大学;2015年
2 张维国;稠环芳烃分子结构对其碳化产物结构的影响[D];北京化工大学;2015年
3 蒋合林;纳米碳/金属氧化(氢氧化)物复合材料的制备及其储能性能研究[D];北京化工大学;2015年
4 郑笑晨;基于纳米碳点复合材料化学修饰电极的制备及应用[D];延安大学;2015年
5 韩晓光;不同尿素添加纳米碳对大豆生长、氮素吸收及产量的影响[D];东北农业大学;2015年
6 张红来;聚合物微凝胶模板法制备纳米碳结构电极材料及电化学性能研究[D];湘潭大学;2015年
7 买飞;纳米碳和亚甲蓝染色法在乳腺癌前哨淋巴结活检中的临床对比[D];大连医科大学;2015年
8 李锐;电石废渣制备碳酸钙的研究[D];河北科技大学;2013年
9 胡文萌;纳米碳化钒/铬复合粉末的微波原位合成及机理研究[D];河南工业大学;2016年
10 李瑛;纳米碳材料改性斯蒂芬酸铅的热分析研究[D];北京理工大学;2016年
本文编号:2323327
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2323327.html