基于数据挖掘和GSA-BP多模型神经网络的微网短期负荷预测
[Abstract]:With the rapid development of economy in our country, the problem of energy depletion is getting worse and worse. As a kind of clean and friendly energy, microgrid can effectively solve the problem of electricity utilization in remote areas of central and western China, and the cost of electricity transportation is high. Low utilization rate and other problems. Microgrid short-term load forecasting, as a research hotspot in micro-grid, has been paid more and more attention by researchers. The short-term load forecasting of microgrid can provide the guarantee for the energy saving and efficient operation of the micro-grid system, and provide the basis for the power dispatching department to formulate the generation plan. Therefore, it is of great significance to strengthen the load forecasting of microgrid for both microgrid system and large power grid. According to the characteristics of microgrid load, a multi-model neural network short-term load forecasting model based on data mining and genetic simulated annealing algorithm (GSA) is proposed in this paper. The main research work and innovative contents are as follows: firstly, the factors affecting microgrid load, such as meteorology, daily type and actual historical load, are analyzed, and the preliminary sample data of microgrid load forecasting are established according to these factors. The data mining technology is used to mine the sample data, and the basic prediction model is established. The specific processing methods are as follows: (1) the rough set attribute reduction algorithm is used to reduce the sample data to find the core factors that affect the load of the microgrid and take it as the input of the prediction model; (2) according to the characteristics of volatility and randomness of microgrid load, the reduced sample data is analyzed by fuzzy clustering, and the sample data is divided into several categories, and the corresponding BP neural network prediction model is established for each kind of sample. (3) in forecasting the load of microgrid, the pattern recognition technique is used to find the network corresponding to the nearest sample set on the forecasting day, and the network is used to forecast the load of microgrid. The short term load forecasting model of micro grid based on multi-model BP network is established through the above steps. The simulation results show that the prediction model can obtain ideal prediction results. Secondly, aiming at the shortcomings of BP neural network, such as slow iterative speed and easy to fall into local minimum, a multi-model BP network prediction model based on GSA algorithm optimization is proposed. The parallel search structure of genetic algorithm (GA) and the probabilistic jump characteristics of simulated annealing algorithm (SA) are combined with BP network to predict the load of microgrid. The results show that the precision of the optimized model is higher than that of the optimized model. Compared with other prediction algorithms, the advantages of multi-model BP network optimized by GSA algorithm in short-term load forecasting of microgrid are further verified. Finally, by analyzing the operation of microgrid load in foreign countries, it is found that the real time price factor will affect the load of microgrid to some extent. Therefore, this paper introduces the real-time electricity price factor into the prediction model. The fuzzy control algorithm is used to modify the load value of the microgrid after the model prediction. The simulation results show that the algorithm can effectively modify the prediction results considering the real-time price factors.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;TP18;TM715
【参考文献】
相关期刊论文 前10条
1 齐庭庭;李建奇;;基于改进机器学习算法的微电网短期负荷预测[J];湖南文理学院学报(自然科学版);2016年03期
2 许志荣;杨苹;赵卓立;王灿;;中国多微网系统发展分析[J];电力系统自动化;2016年17期
3 张彦宇;肖茜;;国内外关于电力系统负荷预测的研究现状分析[J];山东工业技术;2016年11期
4 林顺富;郝朝;汤晓栋;李东东;符杨;;基于数据挖掘的楼宇短期负荷预测方法研究[J];电力系统保护与控制;2016年07期
5 于洪;王国胤;姚一豫;;决策粗糙集理论研究现状与展望[J];计算机学报;2015年08期
6 卢鹤挺;;基于多元线性回归分析的用电量研究[J];中国新技术新产品;2015年14期
7 李东东;覃子珊;林顺富;郑小霞;王天祥;;基于混沌时间序列法的微网短期负荷预测[J];电力系统及其自动化学报;2015年05期
8 刘念;张清鑫;刘海涛;;基于核函数极限学习机的微电网短期负荷预测方法[J];电工技术学报;2015年08期
9 张玲玲;杨明玉;梁武;;微网用户短期负荷预测相似日选择算法[J];中国电力;2015年04期
10 赵慧材;陈跃辉;陈瑞先;彭子扬;;结合模糊粗糙集和支持向量机的电力负荷短期预测方法[J];中国电力;2015年02期
相关博士学位论文 前2条
1 王快妮;支持向量机鲁棒性模型与算法研究[D];中国农业大学;2015年
2 王鹤;含多种分布式电源的微电网运行控制研究[D];华北电力大学;2014年
相关硕士学位论文 前10条
1 廖祥宾;基于碳排放约束的能源消费结构优化研究[D];江南大学;2016年
2 赵洋;基于数据挖掘技术的南京地区短期电力负荷预测方法研究[D];华北电力大学;2016年
3 毕圣;基于数据挖掘技术的短期负荷预测[D];北京交通大学;2016年
4 王艳龙;基于数据挖掘的中长期电力市场需求分析及预测[D];浙江大学;2016年
5 赵晶;城市电力负荷预测技术及其在通辽电网中的应用[D];华北电力大学;2015年
6 杜明建;大数据技术在负荷预测与负荷特性分析中的应用[D];东南大学;2015年
7 杨屹洲;基于数据挖掘的商业电力负荷预测及用电优化算法研究[D];华侨大学;2015年
8 杨波;基于支持向量机的电力系统短期负荷预测[D];辽宁工业大学;2015年
9 匙跃军;曲阳地区中长期电力负荷预测研究[D];华北电力大学;2015年
10 杨育刚;基于光伏发电与负荷预测的微电网储能系统控制策略研究[D];华北电力大学;2015年
,本文编号:2323341
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2323341.html