当前位置:主页 > 科技论文 > 电气论文 >

镁空气电池电解液缓蚀剂的研究

发布时间:2018-11-12 14:34
【摘要】:金属空气电池(MAB)是一种特殊类型的燃料电池,成本低、无毒、无污染、能量和功率输出高效,可作为新能源广泛使用。但镁空气电池的主要问题是镁合金在中性电解液中的自腐蚀和析氢现象严重,需要通过改变镁合金元素的组成或者电解液成分来改善镁合金的抗腐蚀性能,增强电池的储电性能。本文通过在电解液中添加缓蚀剂以改善镁合金阳极的腐蚀性能,研究镁空气电池的电化学性能,根据电化学阻抗谱图和动电位极化曲线分析缓蚀剂对镁合金(AZ31)的影响,并通过组装便携式电池,测缓蚀剂加入电池后对电池性能的影响。在镁空气电池中,镁负极的极化和腐蚀是衡量镁空气电池性能及使用的重要指标。本文通过动电位极化法和电化学阻抗谱法,研究了在8%NaCl电解液中,六水合硝酸铈(CeN3O9· 6H2O)、硝酸钇(Y(NO3)3 · 6H20)、硝酸锆(Zr(NO3)4·5H20)、硝酸镧(La(NO3)3.6H2O)和硝酸钕(Nd(NO3)3·6H2O)单个缓蚀剂以及混合缓蚀剂对AZ31负极抗腐蚀性能的影响。研究结果表明:在电解液中添加六水合硝酸铈、硝酸钇、硝酸锆、硝酸镧和硝酸钕等缓蚀剂,会在AZ31镁合金表面形成保护膜,提高镁合金的耐腐蚀性,延长电池的放电时间,增加其使用寿命。通过实验确定了六水合硝酸铈、硝酸钇、硝酸锆、硝酸钕和硝酸镧的最佳浓度分别是:1.0g/L、4.0g/L、2.5g/L、1.5g/L、3.5g/L,由阻抗计算的缓蚀率分别为 53.88%、48.26%、67.66%、44.39%、72.71%。综合考虑缓蚀剂的效果,六水合硝酸铈、硝酸锆和硝酸镧为理想缓蚀剂,其效果最佳,缓蚀效果最好。在单一缓蚀剂的基础上研究了复合缓蚀剂对镁空气电池耐腐蚀性能的影响,结果表明:六水合硝酸铈和硝酸镧可以增强镁合金的耐腐蚀性能,提高缓蚀速率,由阻抗计算的缓蚀率为78.97%,镁合金的耐腐蚀效果最好,延长电池的使用寿命。六水合硝酸铈与硝酸锆和硝酸镧与硝酸锆的混合对增强镁合金的耐腐蚀性的效果较差。复合缓蚀剂与单一缓蚀剂相比,缓蚀效果较好,电池的放电时间延长近 100min。
[Abstract]:Metal air battery (MAB) is a special type of fuel cell with low cost, non-toxic, pollution-free and efficient energy and power output, so it can be widely used as a new energy source. However, the main problem of magnesia-air battery is that the self-corrosion and hydrogen evolution of magnesium alloy in neutral electrolyte are serious, so it is necessary to improve the corrosion resistance of magnesium alloy by changing the composition of magnesium alloy elements or electrolyte composition. Enhanced battery storage performance. In this paper, the corrosion resistance of magnesium alloy anode was improved by adding inhibitor to the electrolyte, and the electrochemical performance of magnesium air battery was studied. The effect of inhibitor on magnesium alloy (AZ31) was analyzed according to electrochemical impedance spectroscopy and potentiodynamic polarization curve. The effect of corrosion inhibitor on battery performance was measured by assembling portable battery. The polarization and corrosion of magnesium anode are important indexes to evaluate the performance and use of magnesium air battery. In this paper, potentiodynamic polarization and electrochemical impedance spectroscopy were used to study the effects of cerium nitrate hexahydrate (CeN3O9 6H2O), yttrium nitrate (Y (NO3 (3 6H20), zirconium nitrate (Zr (NO3) 4 5H20 in 8%NaCl electrolyte. The effects of a single inhibitor and a mixed inhibitor of lanthanum nitrate (La (NO3 3.6H2O) and neodymium nitrate (Nd (NO3 3 6H2O on the corrosion resistance of AZ31 negative electrode were investigated. The results show that the corrosion inhibitor such as cerium nitrate hexahydrate, yttrium nitrate, zirconium nitrate, lanthanum nitrate and neodymium nitrate can form protective film on the surface of AZ31 magnesium alloy, improve the corrosion resistance of magnesium alloy and prolong the discharge time of battery. Increase its service life. The optimum concentrations of cerium nitrate, yttrium nitrate, zirconium nitrate, neodymium nitrate and lanthanum nitrate are as follows: 1.0 g / L = 4.0g / L = 2.5g / L = 1.5g / L = 3.5g / L, respectively. The corrosion inhibition rates calculated by impedance are 53.88 and 48.26 and 67.66, respectively. The inhibition rate is 44.39 and 72.71, respectively. Considering the effect of corrosion inhibitor, cerium nitrate hexahydrate, zirconium nitrate and lanthanum nitrate are ideal corrosion inhibitors. The effect of composite inhibitor on corrosion resistance of magnesium air battery was studied on the basis of a single corrosion inhibitor. The results showed that cerium nitrate hexahydrate and lanthanum nitrate could enhance the corrosion resistance and corrosion inhibition rate of magnesium alloy. The corrosion inhibition rate calculated by impedance is 78.97. The corrosion resistance of magnesium alloy is the best and the life of battery is prolonged. The mixing of cerium nitrate hexahydrate with zirconium nitrate and lanthanum nitrate with zirconium nitrate has poor effect on strengthening corrosion resistance of magnesium alloy. Compared with a single inhibitor, the composite inhibitor has a better corrosion inhibition effect, and the discharge time of the battery is prolonged by nearly 100 minutes.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM911.41

【参考文献】

相关期刊论文 前10条

1 赵思萌;郝建军;田鑫奇;刘百慧;;镁合金锆酸盐体系转化膜工艺的研究[J];电镀与精饰;2017年02期

2 肖涛;党宁;侯利锋;卫英慧;郭春丽;杜华云;;木质素磺酸钠对3.5%NaCl溶液中AZ31镁合金的缓蚀作用[J];稀有金属材料与工程;2016年06期

3 洪为臣;马洪运;赵宏博;王保国;;锌空气电池关键问题与发展趋势[J];化工进展;2016年06期

4 王诚;邱平达;蔡克迪;肖尧;杨蕊;左朋建;;铝空气电池关键技术研究进展[J];化工进展;2016年05期

5 古东懂;韩宝军;徐洲;;稀土镧对AZ91D镁合金组织及耐蚀性的影响[J];腐蚀与防护;2016年04期

6 洪为臣;雷青;马洪运;王保国;;锌空气电池锌负极研究进展[J];化工进展;2016年02期

7 周娜;侯利锋;卫英慧;郭春丽;杜华云;;磷酸钠在NaCl溶液中对AZ31镁合金的缓蚀作用[J];稀有金属材料与工程;2015年09期

8 王众;;铝空气电池的开发与应用进展[J];科学中国人;2015年24期

9 苗鹤;薛业建;周旭峰;刘兆平;;石墨烯基氧还原催化剂在金属空气电池中的应用[J];化学进展;2015年07期

10 胡启明;张娅;陈秋荣;;镁电池研究进展[J];电源技术;2015年01期

相关博士学位论文 前1条

1 李芬;锌空气电池之气体扩散电极性能研究[D];中国科学技术大学;2010年

相关硕士学位论文 前7条

1 张慧;铝空气电池阴极催化剂LaMnO_3和LSCM的制备与表征研究[D];云南大学;2015年

2 张小雪;金属—空气电池阴极催化剂制备及性能研究[D];北京理工大学;2015年

3 关景鑫;镁合金在缓蚀剂中的腐蚀行为[D];长春工业大学;2014年

4 鲁火清;铝空气电池用铝合金的研究[D];中南大学;2012年

5 李高林;稀土(Y、Nd)对AZ80 镁合金耐腐蚀性能影响的研究[D];河南科技大学;2012年

6 王春梅;镁合金缓蚀剂及磷化膜的研究[D];吉林大学;2007年

7 卜雪涛;碱性锌空气电池负极性能研究[D];河北工业大学;2006年



本文编号:2327391

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2327391.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5ba16***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com