当前位置:主页 > 科技论文 > 电气论文 >

沙尘在太阳能光伏组件表面的沉降与冲蚀行为研究

发布时间:2018-11-15 12:16
【摘要】:随着社会经济的不断发展,对能源的需求不断增加,能源的大量消耗直接导致了近年全国范围内形势越来越严峻的空气污染问题。太阳能是一种清洁、无害且发展潜力巨大的可再生能源,受到社会各界的青睐。我国太阳能资源较好的地区为西北地区,非常有利于太阳能资源的大规模开发利用,但该地区沙漠化和荒漠化较为严重,多风多沙的气候特点使得风中携带的沙粒会在太阳能光伏组件表面产生沉降、冲蚀等行为。利用Fluent中混合模型与DPM模型分别模拟沙尘在光伏组件表面的沉降和冲蚀行为。具体研究内容和结果如下:(1)分析沙尘体积分数对光伏组件表面沙尘沉降分布的影响。结果表明:不同入口体积分数时组件表面沙尘的沉降分布是相同的,只是各部分的体积分数不同;最大沉降区的体积分数均为入口体积分数的1.14倍。(2)分析来流风速和太阳能光伏组件的安装倾角对光伏组件表面沙尘沉降及冲蚀率分布的影响。结果表明:随风速的增加,组件表面沙尘的沉降分层逐渐明显,最大冲蚀率增大;随安装倾角的增加,沙尘在组件表面的沉降更加均匀,最大冲蚀率减小。(3)分析沙尘粒径对光伏组件表面沙尘沉降及冲蚀率分布的影响。结果表明:当光伏组件安装倾角小于45°时,随沙尘粒径的增加,沉降更加均匀;倾角大于45°时,随沙尘粒径的增加,沙尘沉降呈现出分散集中的特点。混合粒径的沉降分布主要由粒径较大的颗粒相决定。随沙尘粒径的增加,最大冲蚀率的变化不大,说明粒径不是影响冲蚀率的主要因素。(4)计算组件表面沙尘的沉降量及最大沉降密度。结果表明:随光伏组件安装倾角的增加,沉降量增加;倾角不变时,随风速的增加,沉降量有所减少;最大沉降密度随风速的增加而增大,当安装倾角为45°时,其最大沉降密度达到最大。(5)分析风向角对光伏组件表面的冲蚀率分布。结果表明:随风向角的增加,组件表面的冲蚀率呈增大的趋势,在风向角为75°时达到最大值。(6)分析沙粒质量流量对光伏组件表面冲蚀率分布的影响。结果表明:随质量流量的增加,最大冲蚀率先增大后波动变化,在质量流量为0.35kg/s时达到最大值。
[Abstract]:With the development of social economy, the demand for energy is increasing, and the large amount of energy consumption has directly led to the more and more serious air pollution problem in the whole country in recent years. Solar energy is a clean, harmless and potential renewable energy, which is favored by all walks of life. The region with better solar energy resources in China is the northwest region, which is very conducive to the large-scale development and utilization of solar energy resources, but desertification and desertification are more serious in this area. Due to the characteristics of windy and sandy climate, the sand particles carried in the wind will cause sedimentation and erosion on the surface of solar photovoltaic module. The mixed model and DPM model in Fluent are used to simulate the sedimentation and erosion behavior of sand dust on the surface of photovoltaic module. The main contents and results are as follows: (1) the influence of dust volume fraction on the sand deposition distribution on the surface of photovoltaic module is analyzed. The results show that the settlement distribution of sand dust on the surface of the assembly is the same with different inlet volume fraction, but the volume fraction of each part is different. The volume fraction of the maximum settlement area is 1.14 times of that of the inlet volume fraction. (2) the effects of the wind speed of the incoming flow and the installation inclination of the solar photovoltaic module on the sand deposition and erosion rate distribution on the surface of the photovoltaic module are analyzed. The results show that with the increase of wind speed, the sedimentation and stratification of sand dust on the surface of the module become obvious, and the maximum erosion rate increases. With the increase of installation inclination, the sand settling on the module surface is more uniform, and the maximum erosion rate is reduced. (3) the influence of sand particle size on the sand deposition and erosion rate distribution on the surface of photovoltaic module is analyzed. The results show that when the installation angle of photovoltaic module is less than 45 掳, the sedimentation becomes more uniform with the increase of dust particle size, and when the inclination angle is greater than 45 掳, the sedimentation of sand dust presents the characteristics of dispersion and concentration. The settlement distribution of the mixed particle size is mainly determined by the larger particle size phase. With the increase of sand particle size, the maximum erosion rate does not change much, which indicates that the particle size is not the main factor affecting the erosion rate. (4) the sedimentation amount and maximum sedimentation density of sand dust on the surface of the module are calculated. The results show that the settlement increases with the increase of the installation inclination of the photovoltaic module, and decreases with the increase of the wind speed when the inclination angle is constant. The maximum settlement density increases with the increase of wind speed. When the installation angle is 45 掳, the maximum settlement density reaches the maximum. (5) the erosion rate distribution of wind direction angle on the surface of photovoltaic module is analyzed. The results show that the surface erosion rate increases with the increase of wind direction angle, and reaches the maximum value when wind direction angle is 75 掳. (6) the influence of sand mass flow on the surface erosion rate distribution of photovoltaic module is analyzed. The results show that the maximum erosion increases first and then fluctuates with the increase of mass flow rate, and reaches the maximum when the mass flow rate is 0.35kg/s.
【学位授予单位】:内蒙古工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM914.4

【参考文献】

相关期刊论文 前10条

1 王宇;陈伟雄;于飞;刘明;严俊杰;;气固两相流外掠H型翅片管磨损特性数值模拟[J];工程热物理学报;2017年01期

2 黄思;邹文朗;周锦驹;何东萍;彭天阳;;基于DPM模型的离心泵非定常固液两相流及磨损计算[J];中国农村水利水电;2016年07期

3 张俪安;钱付平;胡笳;夏勇军;杨洪;鲁进利;韩云龙;;通风管路90°弯管壁面颗粒磨损的数值模拟[J];过程工程学报;2016年03期

4 郭仁宁;赵立柱;马冶;段乐乐;;气固两相流中90°竖直弯管肋条防磨性能的研究[J];热能动力工程;2016年04期

5 黄思;邹文朗;周锦驹;何东萍;彭天阳;;基于DPM模型的离心泵非定常固液两相流及磨损计算(英文)[J];机床与液压;2016年06期

6 宋晓琴;黄诗嵬;朱珊珊;;90°弯管气固两相流磨损研究[J];钻采工艺;2015年06期

7 陈思;王尊策;吕凤霞;何金钢;;基于离散相模型的电潜泵叶轮磨损数值计算[J];中国石油大学学报(自然科学版);2015年03期

8 何兴建;李翔;李军;;T型弯头不同工况的冲蚀磨损数值模拟研究[J];化工设备与管道;2015年03期

9 何兴建;李翔;李军;;不同工况下异径管冲蚀磨损数值模拟研究[J];石油化工设备技术;2015年03期

10 于飞;刘明;王汀;杨雪莲;严俊杰;;弯头内气-固两相流动与管壁磨损特性研究[J];工程热物理学报;2015年04期

相关会议论文 前2条

1 王涛;;近50年来中国北方典型地区沙漠化的发展与逆转态势[A];中国首届沙产业高峰论坛文集[C];2008年

2 孙晓颖;许伟;武岳;;钝体绕流中的计算域设置研究[A];第十三届全国结构风工程学术会议论文集(下册)[C];2007年

相关硕士学位论文 前10条

1 李亚楠;太阳能光伏组件风载及周围沙尘沉降模拟研究[D];内蒙古工业大学;2016年

2 徐通;基于FLUENT的活动板房室内沙尘浓度分布规律数值模拟[D];兰州大学;2016年

3 王成泽;风沙环境下风力机叶片的冲蚀磨损特性研究[D];兰州理工大学;2016年

4 马光飞;闸板位置对闸阀内部气固两相流及磨损的影响[D];浙江理工大学;2016年

5 康师源;风机叶片冲蚀磨损数值模拟研究[D];新疆大学;2015年

6 孟广双;荒漠光伏太阳能电池板表面灰尘作用机理及其清洁方法研究[D];青海大学;2015年

7 王淼;管道内液固两相流磨蚀CFD研究[D];东北石油大学;2014年

8 李凯杰;气固两相流下风力机塔筒的冲蚀磨损行为研究[D];新疆大学;2014年

9 石龙;风沙流对铁路路堤的响应规律及新型挡沙墙设计参数优化模拟研究[D];兰州交通大学;2014年

10 董晓锋;气固两相流下风力发电机叶片材料冲刷磨损行为研究[D];新疆大学;2013年



本文编号:2333276

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2333276.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户018b6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com