当前位置:主页 > 科技论文 > 电气论文 >

计及用电行为聚类的智能小区互动化需求响应方法

发布时间:2018-12-15 00:54
【摘要】:针对复杂智能用电环境下智能用电小区的多用户日负荷需求响应问题,提出一种考虑用户用电行为聚类的互动需求响应方法。首先,以智能小区用户的基本负荷、可调度负荷、电动车负荷和储能装置负荷为约束条件,建立电网负荷波动最小优化目标的需求响应模型;然后,阐述了提出的智能小区互动化需求响应方法,将需求响应模型求解过程分解为电网侧子响应和用户侧子响应的协作互动过程;最后,基于用户侧用电行为聚类分析,采用行为矫正的混合粒子群优化算法实现需求响应模型的互动化方法求解。实验中与分时电价下的响应算法及无用户聚类的集中响应算法对比,其结果表明所提方法通过聚类分析与互动化策略能够在优化结果和算法性能方面优于对比方法。
[Abstract]:In order to solve the problem of multi-user daily load demand response in a complex intelligent power consumption environment, an interactive demand response method considering the clustering of users' power consumption behavior is proposed. Firstly, taking the basic load, schedulable load, electric vehicle load and energy storage unit load of intelligent residential area as the constraint conditions, the demand response model of the minimum optimization objective of power grid load fluctuation is established. Then, the interactive demand response method of intelligent community is presented. The solution process of demand response model is decomposed into the collaborative interaction process of grid side sub-response and user side sub-response. Finally, based on the cluster analysis of user side electricity behavior, a hybrid particle swarm optimization algorithm based on behavior correction is used to solve the interactive solution of demand response model. The experimental results are compared with the response algorithm under time-sharing price and the centralized response algorithm without user clustering. The results show that the proposed method is superior to the comparison method in the optimization results and the performance of the algorithm by clustering analysis and interactive strategy.
【作者单位】: 华北电力大学电气与电子工程学院;国网江苏省电力公司电力科学研究院;
【基金】:国家电网公司科技项目(2015SGKJ10-1) 国家重点研发计划资助项目(2016YFB0901104)~~
【分类号】:TM73;TM76

【相似文献】

相关期刊论文 前10条

1 杜鹃;;智能用电小区新技术应用及运营模式[J];科技传播;2012年24期

2 周师师;李玲娟;陈建新;徐小龙;;智能小区电能调度系统的着色时间Petri网建模[J];南京邮电大学学报(自然科学版);2012年01期

3 霍伟强;蔡松;;湖北省智能用电小区建设浅析[J];湖北电力;2012年03期

4 邓桂平;陈俊;;智能用电小区及其关键技术[J];湖北电力;2010年S1期

5 王t熑,

本文编号:2379637


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2379637.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户68897***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com