当前位置:主页 > 科技论文 > 电气论文 >

中低压配电网馈线负荷时空分布特性研究

发布时间:2018-12-18 07:30
【摘要】:近些年来,由于农村地区农业现代化的发展使得用电设备大量增加,中低压配电网的供电能力逐渐无法适应与日俱增的用电需求,导致中低压配电网馈线运行常常出现问题,其中低电压问题显得尤为突出。中低压配电网中母线电压主要受上级电网控制,台区负荷变化特性对其影响不大;而中低压配电网的馈线电压不同,其由于负荷所在地理位置不同的客观因素以及负荷时间上不同的变化规律的综合影响,使得馈线的沿线电压变化较大。目前,对于配电网变电站侧负荷特性的研究已经取得良好的效果,但馈线中各台区差异性变化的负荷特性研究还相对较少。本文对西双版纳地区中低压配电网馈线的现状进行了研究,利用计量自动化系统中采集到的电压监测数据以及功率监测数据进行实测数据负荷建模,对中低压配电网馈线中出现的问题进行研究。以西双版纳地区中低压配电网中存在的低电压问题为例,对该地区线路各个监测点统计数据统一进行了梳理分析,整理了出现低电压问题的主要地区以及主要时间段;首先研究了计量自动化采集数据的清洗办法,利用双向比较法对错漏数据进行修复;其次研究了数据修复后的聚类办法,对修复后的数据进行平滑、归一化处理,根据公变负荷在生活时段负荷较高,而专变负荷在工作时段负荷较高的用电行为差异,得到不同类型用户各具特点的日负荷曲线,利用K-means聚类算法基于其簇内形状相似、簇间距离较远的聚类模式进行负荷分类,掌握该地区负荷特性;最后根据负荷特性,提出基于实测负荷数据对中低压配电网低电压问题的分析方法,根据待分析的配电网馈线线路搭建仿真系统,基于负荷特性按时间顺序进行负荷建模,将实际线路运行情况在仿真中重现,以分析负荷时空分布特性对中低压配电网低电压问题的影响,确定造成低电压问题的主导负荷因素,制定相应的低电压治理方案。
[Abstract]:In recent years, due to the development of agricultural modernization in rural areas, the power supply capacity of the medium and low voltage distribution network has been increasing greatly, and the power supply capacity of the medium and low voltage distribution network is gradually unable to adapt to the increasing demand for electricity, which often leads to problems in the operation of feeder lines of the medium and low voltage distribution networks. Among them, the problem of low voltage is particularly prominent. The busbar voltage in medium and low voltage distribution network is mainly controlled by the higher power network, but the load variation characteristics of the station area have little effect on it. However, the feeder voltage of medium and low voltage distribution network is different, because of the comprehensive influence of the objective factors of different geographical location of load and the varying law of load time, the voltage along the feeder line changes greatly. At present, the research on the side load characteristics of the distribution network substation has achieved good results, but the load characteristics of different stations in the feeder are relatively small. In this paper, the current situation of feeder of medium and low voltage distribution network in Xishuangbanna area is studied. The load modeling of measured data is carried out by using voltage monitoring data and power monitoring data collected in metering automation system. The problems in feeder of medium and low voltage distribution network are studied. Taking the low voltage problem in the medium and low voltage distribution network in Xishuangbanna area as an example, the statistical data of various monitoring points in this area are combed and analyzed, and the main areas and time periods of the low voltage problems are sorted out. Firstly, the cleaning method of data collected by measurement automation is studied, and the method of bidirectional comparison is used to repair the data. Secondly, the clustering method after data repair is studied, and the data after restoration is smoothed and normalized. According to the difference of electricity consumption behavior between the public variable load and the special variable load in the life period, the special variable load is higher in the working period. The daily load curves of different types of users are obtained, and the K-means clustering algorithm is used to classify the load based on the cluster pattern which is similar in shape and distance between clusters, so as to master the load characteristics in this area. Finally, according to the load characteristics, a method to analyze the low voltage problem of the medium and low voltage distribution network based on the measured load data is proposed. The simulation system is built according to the feeder line of the distribution network to be analyzed, and the load modeling is carried out according to the time sequence of the load characteristics. In order to analyze the influence of time and space distribution characteristics of load on the low voltage problem of medium and low voltage distribution network, the main load factors causing the low voltage problem are determined, and the corresponding low voltage treatment scheme is worked out.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM714

【参考文献】

中国期刊全文数据库 前10条

1 王宝安;商姣;陈豪;;SVG用于单相负荷电能质量综合治理时相电流指令的计算[J];电力自动化设备;2016年02期

2 杨伟奇;高晓阳;朴在林;;中压配电网络低电压补偿调控技术及实现[J];农业工程学报;2016年S1期

3 黄桂兰;林韩;蔡金锭;;农村配电网低电压治理措施研究[J];电气技术;2015年11期

4 陈玲;;云南电网地区级计量自动化系统架构[J];云南电力技术;2015年04期

5 严巨刚;郁睿;;电能计量自动化建设领军云南[J];云南电业;2015年07期

6 韩俊;谈健;黄河;乔黎伟;;基于改进K-means聚类算法的供电块划分方法[J];电力自动化设备;2015年06期

7 郑晓雨;郑静媛;王彦博;;智能电网中实时负荷模型建立研究[J];电力与能源;2015年01期

8 马瑞;周谢;彭舟;刘道新;徐慧明;王军;王熙亮;;考虑气温因素的负荷特性统计指标关联特征数据挖掘[J];中国电机工程学报;2015年01期

9 崔凯;孔祥玉;于慧芳;;法国配电网规划方法研究及相关启示[J];供用电;2014年08期

10 张丽;;“四合一”计量自动化系统的构建及功能应用[J];云南电业;2014年03期

中国博士学位论文全文数据库 前2条

1 徐振华;面向智能电网的广义综合负荷建模方法研究[D];湖南大学;2012年

2 李培强;统计测辨法综合负荷建模研究[D];湖南大学;2009年

中国硕士学位论文全文数据库 前10条

1 周光耀;负荷建模中的负荷特性分类与综合方法的研究[D];山东大学;2016年

2 姜晓晖;负荷建模方法研究和负荷建模平台的开发[D];山东大学;2016年

3 于浩祺;电力负荷特性分析及短期负荷预测系统的研发[D];湖南大学;2016年

4 宋歌;电力负荷实测建模及时变性研究[D];华北电力大学;2015年

5 李萌;中长期电力负荷特性分析和预测方法研究[D];上海交通大学;2014年

6 徐兵;基于在线数据的负荷建模研究[D];山东大学;2013年

7 蔡学文;负荷特性多维度分析方法与典型用户筛选策略研究[D];华北电力大学;2013年

8 赵俊秋;计量自动化系统的一体化设计与应用研究[D];合肥工业大学;2009年

9 周晨;基于负荷特性的电力系统短期负荷预测实现[D];重庆大学;2008年

10 张忠华;电力系统负荷分类研究[D];天津大学;2007年



本文编号:2385560

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2385560.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1b2cd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com