大型风电机组功率跟踪优化控制策略研究
[Abstract]:As a renewable clean energy, wind power generation is becoming increasingly important. Due to the strong randomness of the natural wind, the difficulty of wind turbine control is greatly increased, so the traditional control strategy is difficult to track the maximum power points in operation, and waste part of wind energy. How to improve the utilization coefficient of wind energy and maximize the power generation has become a key problem in wind power generation research. In this paper, the maximum power tracking (MPPT) control strategy of a doubly-fed wind turbine is studied under the excitation of rapidly varying wind speed. The research contents include: aiming at the difficulty of obtaining effective wind speed in traditional control strategy, an effective wind speed estimator is designed based on high-order volumetric Kalman filter (HCKF) and Newton-Raphson method (NR). In order to further improve the resistance of HCKF method to gross error in the measurement process, a robust HCKF method is proposed and applied to the effective wind speed estimator by combining the classical robust estimation theory with the HCKF method. The speed controller and current controller based on the nonsingular fast terminal sliding mode (NFTSMC) are defined, and the stability of the controller is proved. The nonlinear tracking-differentiator is used to estimate the uncertainty of the system and compensate it in real time in order to weaken the chattering of the system. The simulation results show that the controller designed can meet the requirements of maximum wind energy tracking. Aiming at the problem caused by the uneven searching ability in the global scope of the standard Drosophila algorithm, an improved step size strategy is proposed, which dynamically adjusts the forward step size of Drosophila according to the optimal individual position in the current Drosophila population. So that the Drosophila algorithm can balance the search ability in the global scope. Several classical test functions are used to test the step size improvement strategy. The results show that the improved step size strategy can improve the convergence speed and precision of Drosophila algorithm while ensuring the success rate of optimization. Furthermore, the controller parameters are optimized by the improved Drosophila algorithm. The simulation results show that the optimized parameters have better dynamic characteristics than the empirical parameters. Taking doubly-fed wind turbine as the research object, the dynamic response of wind turbine is simulated under the excitation of rapidly changing wind speed. The results show that the control strategy proposed in this paper can accurately estimate the effective wind speed. Compared with the traditional control strategy, it can achieve the maximum power tracking better.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM315
【参考文献】
相关期刊论文 前10条
1 张文杰;王世元;冯亚丽;冯久超;;基于Huber的高阶容积卡尔曼跟踪算法[J];物理学报;2016年08期
2 孔繁镍;马伏花;李燕;;低通滤波PID水轮机调速系统设计[J];控制工程;2016年02期
3 张龙;崔乃刚;杨峰;路菲;卢宝刚;;高阶容积卡尔曼滤波及其在目标跟踪中的应用[J];哈尔滨工程大学学报;2016年04期
4 崔乃刚;张龙;王小刚;杨峰;卢宝刚;;自适应高阶容积卡尔曼滤波在目标跟踪中的应用[J];航空学报;2015年12期
5 李娟;张克兆;李生权;刘超;;最佳叶尖速比的最大功率自抗扰跟踪控制[J];电机与控制学报;2015年12期
6 熊连松;卓放;刘小康;;增强型滑动平均滤波算法及其在畸变电网相位同步控制中的应用[J];电工技术学报;2015年21期
7 程若发;陈立虎;马银平;于新红;;永磁同步风力发电机风能追踪控制仿真研究[J];计算机仿真;2015年06期
8 管冰蕾;汤显峰;葛泉波;;未知测量噪声方差的平方根高阶容积Kalman滤波[J];计算机应用研究;2015年09期
9 张敏;唐东成;张君跃;易志威;朱红萍;陈微;;基于微粒群算法的永磁同步发电机滑模控制[J];计算机工程与应用;2015年22期
10 李勇;朱晓青;黄鹰;;基于直驱永磁风力发电系统中最大风能跟踪的实现[J];湖南工业大学学报;2014年05期
相关博士学位论文 前2条
1 陈杰;变速定桨风力发电系统控制技术研究[D];南京航空航天大学;2011年
2 赵阳;风力发电系统用双馈感应发电机矢量控制技术研究[D];华中科技大学;2008年
相关硕士学位论文 前6条
1 廖正斐;变速恒频双馈风力发电系统最大风能追踪控制的研究[D];沈阳工业大学;2015年
2 陈滨;双馈风力发电系统高阶滑模控制策略的研究[D];哈尔滨工业大学;2013年
3 陈林;基于最大功率点跟踪及最小疲劳载荷的WTGS控制策略的研究[D];河北工业大学;2013年
4 徐兵兵;大功率变频系统的控制策略及参数辨识[D];南京航空航天大学;2012年
5 邓雅;不平衡电网电压下双馈风力发电系统变流器控制策略研究[D];北京交通大学;2011年
6 刘畅;双馈式变速恒频风力发电机控制方法改进研究[D];华北电力大学(北京);2010年
,本文编号:2400334
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2400334.html