虚实结合的智能变电站仿真实验平台的研究
[Abstract]:The integration of knowledge and practice is a part of the traditional Chinese culture, which is of great significance to the cultivation of talents now, and it is also necessary for engineers to complete a large number of experiments. However, for various reasons, experimental equipment is not available, and the cost of operation, maintenance and upgrade is high. In order to complete all kinds of experiments in the course requirement faster and better, the simulation experiment platform based on simulation software, configuration software and network technology is an important means to solve the above problems. A set of intelligent substation simulation experiment platform based on Simulink simulation platform and configuration software of Kingview configuration is designed in this paper. The platform includes two parts: the bottom equipment simulation platform and the upper computer configuration software. The platform is based on the network, users can log in remotely, then carry on simulation experiment after logging in, and get the corresponding results. Taking the simulation operation of intelligent substation as an example, Simulink is used to simulate the steady operation of substation, transformer differential protection, over-current protection of low voltage start-up, algorithm simulation of backup protection and the acquisition of electrical quantity required by simulation. Then the substation monitoring interface is designed by Kingview software, the simulation data collection is realized by dynamic data exchange protocol, and the simulation data, image and video data are recorded by Oracle database. Using Kingview's WEB publishing function and Java EE technology, the simulation experimental platform is published to the network. These parts constitute a relatively complete simulation experimental platform. Users can complete the pilot project anywhere at any time. In order to compress and archive real-time data and pictures, In this paper, the main method of deep learning training is to divide the image into similar subgraph sets and compress the image to reduce the time and space of data compression and improve the quality of compressed image. Finally, the software test shows that the platform can realize the visualization of the simulation function and the user operation of the intelligent substation, and each function is stable and has strong practicability and expansibility. The platform is a breakthrough in the field of online lightweight, low-cost intelligent substation simulation experimental platform for teaching, and it is an effective supplement to the conventional experimental operation. There are also other ways for students to understand the substation in addition to visiting and watching the video on the spot. Moreover, the knowledge of intelligent substation is more perfect to deepen the students' understanding and application ability of knowledge.
【学位授予单位】:广西大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM63;TM76
【参考文献】
相关期刊论文 前10条
1 贺杰;郭慧;李琳;;基于SNAMG分割的分形图像压缩方法[J];湘潭大学自然科学学报;2015年03期
2 姜艳媛;王海岩;杨日新;;基于图像熵的分形和改进SPIHT混合编码的遥感影像压缩算法[J];影像技术;2015年03期
3 郭慧;贺杰;卢振坤;;结合分类方法的并行分形图像编码算法研究[J];湘潭大学自然科学学报;2015年01期
4 张方舟;王徐研;郝庆辉;;基于遗传分形编码的嵌入式小波图像编码算法[J];计算机技术与发展;2015年01期
5 王勤;黄云霞;任维政;;基于B/S的远程虚拟示波器的设计与应用[J];自动化与仪表;2014年08期
6 娄莉;;蚁群算法与分形相结合的图像压缩改进算法[J];微电子学与计算机;2013年12期
7 刘树群;潘章容;;基于Fisher分类和空间映射的分形图像编码方法[J];计算机应用;2013年12期
8 张爱华;常康康;;结合DCT补偿的分形图像编码[J];计算机技术与发展;2014年01期
9 李英明;郑拓夫;周水斌;闫志辉;赵应兵;陈玉峰;;一种智能变电站合并单元关键环节的实现方法[J];电力系统自动化;2013年11期
10 刘婷;钱扬义;彭豪;;基于网络的远程实验室研究:国内13年研究回顾[J];远程教育杂志;2013年02期
相关博士学位论文 前1条
1 王海柱;智能变电站信息流定量分析与优化控制研究[D];华南理工大学;2014年
相关硕士学位论文 前10条
1 范靓;基于遗传算法和深度学习的分形图像压缩算法的研究[D];内蒙古农业大学;2016年
2 吕昌远;基于LabVIEW的虚实结合远程模拟电路实验平台设计[D];东南大学;2016年
3 凌俊斌;500千伏智能变电站技术及应用研究[D];东南大学;2015年
4 贺希;基于LabVIEW的虚拟远程实验系统的设计[D];湖南工业大学;2014年
5 战胜;基于组态王的变电站综合监控系统设计及应用[D];华北电力大学;2014年
6 杨丽;小波域分形图像编码及其在GPU上的快速实现[D];安徽大学;2014年
7 沈樟彪;虚实结合框架的电力电子远程实验[D];浙江大学;2014年
8 张欢;虚实结合框架下的数字电路远程网络实验[D];浙江大学;2014年
9 杨凯;基于虚实结合实验室的电路原理实验[D];浙江大学;2013年
10 王昀;基于JAVA技术的虚拟仪器元件库设计与实现[D];北京邮电大学;2010年
,本文编号:2404789
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2404789.html