MH-Ni动力电池的建模与SOC估算
[Abstract]:With the aggravation of the energy crisis and the environmental problems caused by the emission of pollution gases from fuel vehicles, electric vehicles have been paid more and more attention by many countries for their advantages of zero pollution, high efficiency and low noise. As a kind of energy storage equipment with high specific energy, high specific power, long cycle life and low pollution, Ni-MH battery has become one of the main choice objects in the power energy selection of new energy electric vehicles and hybrid electric vehicles. In this paper, nickel-hydrogen power battery as the research object, explore the way to improve the accuracy of SOC estimation. In view of the fact that the open circuit voltage of Ni-MH battery is greatly affected by polarization, an extended Kalman filter (EKF) algorithm based on open-circuit voltage self-adjustment is proposed to estimate the state of charge (SOC) of Ni-MH battery, and good results are obtained. Firstly, the working principle of MH-Ni battery is introduced. The basic characteristics of the battery are obtained by the design experiment, and the factors affecting the SOC of the battery are analyzed. The equivalent circuit model of MH-Ni battery is established by selecting the first-order Thevenin model considering the battery characteristics and other factors. The HPPC cycle experiment is designed. The parameters of the battery model are identified by the recursive least square method of system identification, and the battery model is established in Matlab. The simulation verifies the feasibility of the battery model and modifies the open-circuit voltage parameters of the model. The modified model has a good follow-up to the test of the variable current condition and the terminal voltage. An extended Kalman filter (EKF) state-of-charge SOC estimation algorithm based on open-circuit voltage self-adjustment is proposed, which is more accurate in selecting open-circuit voltage and thus improves the accuracy of the whole algorithm. The charging model parameters and discharge model parameters are identified by HPPC experiment and discharge HPPC experiment. The SOC estimation is verified by extended Kalman filter algorithm for charging cycle and discharge cycle experiments. The results show that the accuracy of charging model parameters in charging cycle experiments is higher than that of discharge model parameters in discharge cycle experiments, but for variable current conditions, both model parameters are not high. For DST, the improved extended Kalman filter algorithm based on open-circuit voltage self-tuning is more accurate than that of charging model parameters and discharge model parameters.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【参考文献】
相关期刊论文 前10条
1 胡秀芝;金鹏;苌瑞锋;;基于Thevenin模型的氢镍电池仿真[J];电源技术;2014年11期
2 伍佳佳;赵又群;;基于Thevenin模型的混合动力镍氢电池参数辨识[J];农业装备与车辆工程;2014年01期
3 朱浩;钱承;谢煜冰;李磊;;混合动力镍氢动力电池参数辨识[J];湖南大学学报(自然科学版);2011年08期
4 熊瑞;何洪文;丁银;;HEV用锂离子电池动态模型参数辨识方法研究[J];电力电子技术;2011年04期
5 李超;商安娜;;电动汽车用氢镍电池二阶RC模型的研究[J];电源技术;2011年02期
6 蔡志辉;刘国繁;骆晶;;基于EXCEL的车用动力电池模型参数辨识研究[J];湖南工程学院学报(自然科学版);2010年04期
7 胡运飞;廖承林;王丽芳;;混合动力汽车用MH/Ni电池的建模[J];电池;2008年04期
8 王胜;李礼夫;;基于卡尔曼滤波的HEV电池剩余电量的估计[J];现代制造工程;2008年01期
9 冯旭云;魏学哲;朱军;;MH/Ni电池等效电路模型的研究[J];电池;2007年04期
10 裴晟;陈全世;林成涛;;基于支持向量回归的电池SOC估计方法研究[J];电源技术;2007年03期
相关会议论文 前1条
1 魏婧雯;董广忠;张陈斌;陈宗海;;电动汽车用动力电池数学模型研究综述[A];系统仿真技术及其应用学术论文集(第15卷)[C];2014年
相关博士学位论文 前2条
1 高明煜;动力电池组SOC在线估计模型与方法研究[D];武汉理工大学;2013年
2 武国良;电动汽车用镍氢电池剩余电量估计方法研究[D];哈尔滨工业大学;2010年
相关硕士学位论文 前9条
1 潘佰韬;锂离子电池管理系统的设计与SOC估算研究[D];河北工业大学;2015年
2 胡秀芝;锂离子电池管理系统的设计[D];北方工业大学;2014年
3 刘斌;镍氢动力电池模型辨识与SOC估计方法研究[D];中南大学;2014年
4 薛辉;动力锂离子电池组SOH估计方法研究[D];吉林大学;2013年
5 骆晶;MH/Ni动力电池SOC估算方法研究及实现[D];湘潭大学;2012年
6 刘浩;基于EKF的电动汽车用锂离子电池SOC估算方法研究[D];北京交通大学;2010年
7 罗卓;锂离子电池综合使用性能的评价、修复及相关机理研究[D];中南大学;2009年
8 张术;电动汽车电池管理系统软件设计与SOC估算策略研究[D];天津大学;2007年
9 劳力;动力蓄电池管理系统SOC算法研究[D];北京交通大学;2007年
,本文编号:2431939
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2431939.html