云环境下大规模配电网分布式最优潮流计算研究
[Abstract]:By arranging a large number of sensors and data acquisition devices, smart grid can improve the ability of collecting and monitoring the related data of power grid in real time, so as to realize intelligent transmission and distribution, which is the inevitable trend of power grid development in the future. However, the operation of smart grid has brought about the explosive growth of the amount of data collected, with the characteristics of big data. At present, in the optimal power flow calculation of large-scale power grid, when the traditional calculation method faces the power system data with big data characteristics, the calculation speed is slow and the task execution efficiency is low, so it is difficult to meet the real-time computing requirements of smart grid, while most of the existing parallel computing methods run on special parallel computers, and the performance and price are relatively low. Therefore, how to realize the optimal power flow calculation quickly with high performance-price ratio has become an important problem to be solved in the development of smart grid. In this paper, the distributed parallel computing method for optimal power flow of large-scale distribution network in cloud environment is studied. With the help of Map-Reduce distributed parallel programming framework, the proposed method can run on Hadoop clusters with high performance and price. Specifically, this paper first proposes an optimal power flow algorithm performance model for Map-Reduce framework. The model can analyze and quantify the execution time of the algorithm under different cluster configurations, and provide guidance for the decomposition and calculation granularity of the power grid in the algorithm. Based on this performance model, a load balancing algorithm for optimal power flow calculation is proposed in this paper. In the case of given cluster resources, the optimal algorithm decomposition method and computational granularity are determined by simulated annealing algorithm, and the load balancing is realized by feeder reorganization algorithm, so as to optimize the computing speed and efficiency of optimal power flow in cloud environment. In the aspect of experiment, the proposed method is compared with the traditional serial optimal power flow calculation. The experimental results show that the proposed method can reduce the computing time by 68.3% compared with the serial method. At the same time, the calculation time of the optimal power flow algorithm under load balancing and imbalance is verified. The experimental data show that compared with the load imbalance method, the load balancing algorithm proposed in this paper can reduce the calculation time of the optimal power flow by 43.7%.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM744
【参考文献】
相关期刊论文 前10条
1 傅志生;白晓清;李佩杰;韦化;;一种快速求解大规模安全约束最优潮流的多核并行方法[J];电力系统保护与控制;2015年03期
2 张东霞;苗新;刘丽平;张焰;刘科研;;智能电网大数据技术发展研究[J];中国电机工程学报;2015年01期
3 彭小圣;邓迪元;程时杰;文劲宇;李朝晖;牛林;;面向智能电网应用的电力大数据关键技术[J];中国电机工程学报;2015年03期
4 梅华威;米增强;吴广磊;;基于MapReduce模型的间歇性能源海量数据处理技术[J];电力系统自动化;2014年15期
5 宋亚奇;周国亮;朱永利;;智能电网大数据处理技术现状与挑战[J];电网技术;2013年04期
6 郭烨;吴文传;张伯明;孙宏斌;;极坐标下含零注入约束的电力系统状态估计的修正牛顿法与快速解耦估计[J];中国电机工程学报;2012年22期
7 张晓洲;;云计算关键技术及发展现状研究[J];网络与信息;2011年09期
8 夏俊峰;杨帆;李静;郑秀玉;;基于GPU的电力系统并行潮流计算的实现[J];电力系统保护与控制;2010年18期
9 谢开贵;张怀勋;胡博;曹侃;吴韬;;大规模电力系统潮流计算的分布式GESP算法[J];电工技术学报;2010年06期
10 陈颖;沈沉;梅生伟;卢强;;基于改进Jacobian-Free Newton-GMRES(m)的电力系统分布式潮流计算[J];电力系统自动化;2006年09期
相关硕士学位论文 前3条
1 王淑祥;基于Hadoop的海量电能质量数据云计算平台研究[D];华北电力大学;2014年
2 冯懿;基于云计算的电力系统不良数据辨识算法研究[D];南京理工大学;2013年
3 梁阳豆;CUDA平台下的电力系统最优潮流并行计算研究[D];广西大学;2012年
,本文编号:2499380
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2499380.html