低压微电网中两级LCC逆变系统及其并网控制策略研究
[Abstract]:In view of the characteristics and nonlinear factors of low voltage microgrid and the increasingly prominent problem of three-phase load imbalance, the research on its control mode and inverter system is of great significance. In this paper, the inverter system with two-stage topology is analyzed. The front stage converts the DC voltage through Buck-Boost circuit, and follows the influence of distributed power supply voltage fluctuation to complete the voltage adjustment in order to meet the working needs of the later stage inverter. LCC (inductor-Capacitor, inductor-capacitor-capacitor) inverter circuit is used to convert the output voltage of the front stage into AC current which meets the requirements of grid-connected. In this paper, the state space average method is used to analyze and model the Buck-Boost circuit, and the linear transfer function of AC small signal is obtained. Aiming at the instability of the system, a proportional integral compensator is designed so that the control system can effectively suppress the low frequency disturbance and follow the given voltage quickly when the input voltage and load appear step disturbance. Then the voltage source LCC inverter system, which is only determined by the input fundamental voltage, is analyzed and established, which has good output voltage quality under both nonlinear load and load imbalance. Based on the excellent characteristics of LCC inverter system, the voltage control strategy of LCC inverter system is studied in this paper. Aiming at the open-loop control strategy of LCC inverter, which has large start-up overshoot and can not restrain input voltage disturbance, a real-time hysteretic control strategy with output voltage is adopted, which effectively reduces the start-up overshoot and realizes the fast regulation of voltage disturbance. Based on the analysis of three-phase unbalanced load and nonlinear load of LCC inverter, according to the model of LCC inverter system, the compensator of disturbance component is designed, and a compensation chain is introduced to counteract the influence of nonlinear load. In order to solve the problem of output voltage amplitude decline caused by dead-time effect in modulation process, the elimination and suppression strategy of dead-time effect is designed by analyzing the working mode of single-phase bridge arm at dead time. At the same time, on the basis of expounding the principle of traditional Pf-QV droop control, an improved PV-Qf drooping control strategy with frequency and voltage coordination control with resistive virtual impedance is designed for low voltage microgrid. When the inverter fed energy to the power grid, a grid-connected open-loop control strategy was designed. The simulation results show that the open-loop control is feasible under ideal conditions. For the case of disturbance, the proportional resonance control strategy is used to synchronize the LCC inverter system into the power grid, and the control system can track the sinusoidal signal of 50Hz without phase deviation, and at the same time has attenuation effect on other harmonics. Finally, a microgrid simulation model with two LCC inverter systems in parallel is built in MATLAB/Simulink, and the simulation analysis in isolated island and grid-connected mode is carried out. In isolated island mode, it is verified that the improved drooping control strategy for low voltage microgrid can realize the power distribution and smooth switching of the two inverters. In the grid-connected mode, the designed proportional resonance controller is simulated, and it is verified that the grid-connected current can follow the given current and run per unit power factor. In addition, the waveform quality of grid-connected current of LCC inverter and LCL inverter is compared. The steady-state error and harmonic distortion rate of grid-connected current of LCC inverter are lower than those of LCL inverter, which further explains the excellent characteristics of LCC inverter.
【学位授予单位】:西华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM464
【参考文献】
相关期刊论文 前10条
1 李源;李永东;程志江;李响;郭俊辉;;基于主从控制的微电网平滑切换控制策略研究[J];电测与仪表;2016年24期
2 桂永光;刘桂英;粟时平;罗钱;张捷;;适用于光伏微网并网和孤岛运行的控制策略[J];电源技术;2016年05期
3 闫俊丽;彭春华;陈臣;;基于动态虚拟阻抗的低压微电网下垂控制策略[J];电力系统保护与控制;2015年21期
4 黎金英;艾欣;;改善微电网电能质量的分层控制策略研究[J];宁夏电力;2015年05期
5 马皓;林钊;王小瑞;;不平衡非线性负载下三相逆变器的建模与控制[J];电工技术学报;2015年18期
6 许津铭;谢少军;张斌锋;;分布式发电系统中LCL滤波并网逆变器电流控制研究综述[J];中国电机工程学报;2015年16期
7 张哲;专祥涛;于炎娟;;基于状态空间平均法的逆变器建模与控制策略研究[J];自动化与仪表;2015年08期
8 周龙;齐智平;;微电网保护研究综述[J];电力系统保护与控制;2015年13期
9 宋保业;许琳;卢晓;;基于Tustin变换的分数阶微分算子近似离散化[J];科学技术与工程;2015年13期
10 许德志;汪飞;阮毅;毛华龙;张巍;杨影;;并网接口滤波器拓扑结构推演与分析[J];电工技术学报;2015年04期
相关博士学位论文 前5条
1 陈燕东;微电网多逆变器控制关键技术研究[D];湖南大学;2014年
2 任洲洋;光伏时空概率模型及其在电力系统概率分析中的应用[D];重庆大学;2014年
3 薛贵挺;含多种分布式能源的微电网优化及控制策略研究[D];上海交通大学;2014年
4 蔡克卫;基于LCL滤波的微网逆变器控制策略研究[D];大连理工大学;2014年
5 王要强;LCL滤波的并网逆变系统及其适应复杂电网环境的控制策略[D];哈尔滨工业大学;2013年
相关硕士学位论文 前8条
1 石宇龙;电网电压畸变情况下三相并网逆变器控制研究[D];燕山大学;2015年
2 赵西超;三相光伏并网逆变器与控制技术的研究[D];辽宁工业大学;2014年
3 郑晓明;微网逆变器虚拟同步发电机控制策略的分析与验证[D];燕山大学;2013年
4 张中锋;微网逆变器的下垂控制策略研究[D];南京航空航天大学;2013年
5 柯人观;微电网典型供电模式及微电源优化配置研究[D];浙江大学;2013年
6 张纯;微网双模式运行的控制策略研究[D];重庆大学;2011年
7 张文波;微电网逆变电源控制策略的研究[D];山东大学;2011年
8 唐亮;三相并网逆变器LCL滤波特性分析及控制研究[D];燕山大学;2010年
,本文编号:2505669
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2505669.html