当前位置:主页 > 科技论文 > 电气论文 >

基于大数据分析的风电场故障预警

发布时间:2019-06-28 14:41
【摘要】:传统的风机故障预警一般通过设定单一变量的恒定预警阈值来实现,但在实际复杂工况下,这种方法易导致故障误报、不报或预留排查时间不足。在不同的环境温度下,风机的运行状况不完全相同,并网发电量、并网功率、各部件温度也不尽相同,仅依靠恒定预警值无法满足复杂多变的工况下的预警要求。针对此问题,本文提出一种基于大数据分析的风机群落中异常风机的识别和故障预警方法。通过对河北赤沽地区某大型风电场中所有风机运行状况的研究,并结合现场SCADA系统中相关历史数据的整理分析,采用聚类分析的方法对风场中运行工况相似的风机进行群落划分。采用统计学原理,对每一个群落中风机温度类参数进行箱式分布,依据箱式图中离群点的分布特性识别出群落中表现为离群特性的风机。在此基础上采用显著性差异分析方法对离群风机进行异常显著性判断,识别出异常运行的离群风机。为排除偶然因素造成的干扰,采用滑动窗口异常率统计分析方法消除风电机组奇异点的干扰,实现了风机群落中异常风机的识别。在hadoop大数据分析平台中采用“分布式存储、并行式计算”的方法对整个风场进行分析,实现所有群落中异常风机地识别。为进一步预测异常风机的变化特性,采用线性回归分析方法对异常风机正常历史数据进行建模,采用实时数据对模型进行残差预测。结合现场经验设置合理的预测残差预警阈值,从而实现异常风机的故障预警。
[Abstract]:The traditional fan fault early warning is usually realized by setting a constant early warning threshold of a single variable, but under the actual complex working conditions, this method is easy to lead to false alarm of the fault, and there is not enough time to report or reserve the check. At different ambient temperatures, the operation status of the fan is not exactly the same, grid-connected power, the temperature of each component is not the same, only rely on constant early warning value can not meet the requirements of early warning under complex and changeable working conditions. In order to solve this problem, this paper presents a method of identification and fault early warning of abnormal fans in fan community based on big data analysis. Based on the study of the operation status of all the fans in a large wind farm in Chigu area of Hebei Province, and combined with the collation and analysis of the relevant historical data in the field SCADA system, the fan community with similar operating conditions in the wind field is divided by cluster analysis. Based on the statistical principle, the fan temperature parameters in each community are distributed in the box, and the fans with outlier characteristics in the community are identified according to the distribution characteristics of the outliers in the box diagram. On this basis, the significance difference analysis method is used to judge the abnormal significance of the outlier fan, and the abnormal operation of the outlier fan is identified. In order to eliminate the interference caused by accidental factors, the statistical analysis method of abnormal rate of sliding window is used to eliminate the interference of singularity of wind turbine, and the identification of abnormal fan in fan community is realized. In hadoop big data analysis platform, the method of "distributed storage and parallel calculation" is used to analyze the whole wind field, and the identification of abnormal fan in all communities is realized. In order to further predict the variation characteristics of abnormal fan, linear regression analysis method is used to model the normal history data of abnormal fan, and real-time data are used to predict the residual error of the model. Combined with the field experience, a reasonable prediction residual early warning threshold is set to realize the fault early warning of abnormal fan.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;TM614

【参考文献】

相关期刊论文 前10条

1 郭鹏;姜漫利;李航涛;;基于运行数据和高斯过程回归的风电机组发电性能分析与监测[J];电力自动化设备;2016年08期

2 魏书荣;何之倬;唐征歧;周杰;;海上风电机组的在线监测与故障预警[J];上海电力学院学报;2014年06期

3 卢建昌;樊围国;;大数据时代下数据挖掘技术在电力企业中的应用[J];广东电力;2014年09期

4 顾煜炯;苏璐玮;钟阳;徐婷;;基于区间划分的风电齿轮箱在线故障预警方法[J];电力科学与工程;2014年08期

5 孙翔;何文林;邱炜;李晨;;基于显著性差异的油浸倒置式电流互感器氢气阈值分析[J];浙江电力;2014年06期

6 李辉;杨超;李学伟;季海婷;秦星;陈耀君;杨东;唐显虎;;风机电动变桨系统状态特征参量挖掘及异常识别[J];中国电机工程学报;2014年12期

7 童超;郭鹏;;基于特征选择和BP神经网络的风电机组故障分类监测研究[J];动力工程学报;2014年04期

8 王珊;苏璐玮;顾煜炯;杨昆;;变工况特性下的风电轴承早期故障诊断方法[J];电力科学与工程;2014年03期

9 孙建平;朱雯;翟永杰;葛建宏;;基于MSET方法的风电机组齿轮箱预警仿真研究[J];系统仿真学报;2013年12期

10 许骏龙;李征;;基于支持向量机的风电机组故障预警[J];工业控制计算机;2013年08期

相关硕士学位论文 前2条

1 张小田;基于回归分析的风机主要部件的故障预测方法研究[D];华北电力大学;2013年

2 李若昭;风电机组综合性能评估与运行特性分析[D];华北电力大学(北京);2009年



本文编号:2507373

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2507373.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a3f61***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com